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Overview
Overview

A Top-Down Approach To IC Design provides a practical foundation for 
the top-down design of ASIC and FPGA-intensive hardware systems. This 
book is intended to be used by engineers and managers who are involved 
at various stages of top-down design methodology including those just 
making the transition to top-down design. 

The top-down design methodology addresses systems-level, ASIC, and 
FPGA design issues relating to concurrent design, validation, 
implementation, and manufacturing. Methodology trade-offs are discussed 
and specific recommendations are made to facilitate effective top-down 
design.

The methodologies and environment are described in sufficient detail for 
readers to be able to both recognize their benefits as well as directly 
implement them.
v1.2 1



Organization of This Book
Organization of This Book

There are three major sections to this book. For a very high-level overview 
of top-down design, you can read just the introduction. For more 
information about a particular area of top-down design methodology, you 
can read one or more of the methodology chapters. To understand the 
top-down design flow and how the methodology is applied to a particular 
design, you can read the design chapters.

n Introduction

Chpater 1 defines top-down design, describes its basic principles, gives 
a sample design flow and schedule, and discusses the critical factors 
related to a successful transition to top-down design.

n A methodology section

Chapters 2-5, 8, and 9 describes design challenges and how the 
top-down methodology addresses them. The discussion is divided into 
the principle areas of top-down design methodology:

q Design environment

q Design capture

q Design for test

q Design verification

q Logic synthesis

q Timing-driven design

n A design section

Chapters 6, 7, 10, and 11 illustrate the application of the top-down 
design methodology to a particular design, a Dual-Tone 
Multi-Frequency Receiver system. The discussion is divided into the 
principle phases of the top-down design flow:

q Chaper 6, High-level system design

q Chapter 7, Design environment

q Chapter 10, Block-level implementation

q Chapter 11, Chip-level assembly

The case study also includes a description of a sample design 
environment.
2 A Top-Down Approach To IC Design v1.2
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Introduction
Introduction

The challenges facing the electronics design community today are 
significant. Advances in semiconductor technology have increased the 
speed and complexity of designs in tandem with growing time-to-market 
pressures. The companies that have remained competitive are those that 
are able to adapt to changing methodology requirements and develop a 
broad range of products quickly and accurately.

Successful product development environments (PDEs) streamline the 
design process by creating the best practices involving people, process, 
and technology. Developing these best practices is based on a thorough 
understanding of the needed design methods and how to apply them to the 
system project. This document reviews the basic principles of top-down 
design for ASIC and FPGA-intensive systems, and provides guidelines for 
developing best practices based on both semiconductor and EDA 
technology advances.
 Introduction 1-1



What is Top-Down Design?
What is Top-Down Design?

The strategy of most successful PDEs is to build advanced, high quality 
products based on a system platform architecture that effectively 
incorporates leading-edge hardware and software algorithms as well as 
core technology. This strategy provides integration density, performance, 
and packaging advantages and enables product differentiation in features, 
functions, size, and cost. In most cases, to fully exploit these opportunities, 
this strategy requires a transition from a serial or bottom-up product 
development approach to top-down design.

The Bottom-Up 
Design Approach

In a bottom-up design approach, the design team starts by partitioning the 
system design into various subsystem and system components (blocks). 
The subsystems are targeted to ASICs, FPGAs, or microprocessors. Since 
these subsystem designs are usually on the critical path to completing the 
design, the team starts on these immediately, developing the other system 
components in parallel. Each block is designed and verified based on its 
own requirements. When all blocks are complete, system verification 
begins.

The bottom-up design approach has the advantages of focusing on the 
initial product delivery and of allowing work to begin immediately on 
critical portions of the system. With this approach, however, system-level 
design errors do not surface until late in the design cycle and may require 
costly design iterations. Furthermore, while related products can reuse 
lower-level components, they cannot leverage any system-level 
similarities in design architecture, intellectual property, or verification 
environment. Finally, bottom-up design requires commitment to a 
semiconductor technology process early on and hinders the ability to reuse 
designs in other technology processes.

The Top-Down 
Design Approach

The alternative approach is the top-down design approach. In this 
approach, the design team invests time up front in developing system-level 
models and verification environment. Using the system models, the team 
is able to analyze trade-offs in system performance, features set, 
partitioning, and packaging. Furthermore, a system-level verification 
environment ensures that system requirements are met and provides the 
infrastructure for verifying the subsystems and system components. 
1-2 A Top-Down Approach To IC Design v1.2



What is Top-Down Design?
The top-down design approach results in higher confidence that the 
completed design will meet the original schedule and system 
specifications. Basing the starting point of the system design on a single 
verified model ensures that critical design issues surface early in the 
process and reduces false starts in the concurrent design of ASICs, PCBs, 
and systems. The design team can discover and manage system-level 
issues up front, rather than having to redesign the system at the end of the 
design cycle. Because each subsystem is designed and verified within the 
context of the system verification environment, the overall system 
functionality is preserved. 

The key idea is top-down design, where the system is defined in 
ever-increasing levels of detail...Presumably, one then has everything 
defined completely before actually specifying a single gate. 
Traditionally, designers have handled pre-implementation stages 
informally...Today’s systems are too complex for such approaches.

[Dr. Leventhal, Printed Circuit Design, Sept. 1995]

The top-down design approach also effectively leverages the initial 
product development in the design of related products. The related projects 
begin with the system environment in place. The design team can reuse and 
reverify alternative designs, packages, or implementations without having 
to rebuild a new context or infrastructure.
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Success Factors in the Transition to Top-Down Design
Success Factors in the Transition to Top-Down Design

Advances in semiconductor technology drive advances in EDA 
technologies and create new opportunities, as well as challenges, for the 
electronics industry. The successful companies are the ones that can 
leverage the opportunities offered by semiconductor advances as well as 
the new technologies and methodologies offered by the EDA companies. 
Product development strategies therefore play a prominent role in business 
strategy.

A company’s competitiveness can be analyzed using the Y-diagram shown 
in Figure 1-1. The more competitive companies are able to develop system 
architectures and algorithms that exploit the opportunities offered by the 
new semiconductor technologies, while at the same time adopting the new 
EDA technologies and methodologies that allow them to deliver quality 
products. This capability allows them to compete for increased market 
share with more advanced products.

The risk in adopting new technologies is not insignificant, however. In 
order to enhance, not inhibit, a company’s competitiveness, the adoption 
of a new technology must be based on well-defined business objectives 
and made with a clear understanding of the need to invest in training the 
design team in the new methods and tools. Otherwise, the team may not be 
productive. 

There are several essential factors that govern ultimate success

n Rich technology and product development environment

n Effective planning and training in methodology and process

n An integrated, well trained project team working concurrently on 
design, implementation, validation, and manufacturing
1-4 A Top-Down Approach To IC Design v1.2



Success Factors in the Transition to Top-Down Design
Figure 1-1 PDE Competitive Analysis

Advances in 
Semiconductor 
Technology

Recent advances in semiconductor technology have created the 
opportunity to put more and more functionality, even entire systems, onto 
a single chip (systems in silicon). This trend toward the siliconization of 
electronic products is detailed in Figure 1-2. 

Figure 1-2 Siliconization Trend from the Mid-1990s (Collett International, 1995)

The recent advances in technology enable the electronics industry to create 
new markets and develop new products with unprecedented performance 
and features while keeping cost, power, and size to a minimum. These 
advances have had a profound effect in shaping the electronics industry by 
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Success Factors in the Transition to Top-Down Design
significantly raising the level of electronics found in most 
technology-oriented products. If this siliconization trend continues as 
expected, it will result by 1998 in a 2X increase over 1994 levels in the 
relative gate complexity of the top 25% of ASICs developed. Maximum 
silicon potential found in ASICs will also rise substantially and exceed 
2,000,000 gates for the largest available commercial ASIC packages.

Based on the siliconization trend, the concept of an ASIC has been 
extended to Application Specific Standard Products (ASSPs), which 
combine ASIC capability along with one or more standard cores. Even 
now in 1995, the industry has been quick to introduce standard core 
products supporting a wide variety of rapidly emerging wireless, 
networking, telecom, multimedia standards, and general purpose 
processors, DSPs, and controllers. These core products will create a 
dramatic new level of system integration and functionality.

Advances in EDA 
Technology

Current directions in EDA focus on providing dramatic improvements in 
design productivity by integrating the tools and methods for system design, 
logic implementation, and physical design, and by driving those tools and 
methods with deep sub-micron technology factors. New “enabling” 
technologies will emerge just as logic synthesis emerged to enable ASIC 
design using HDLs in the late 1980s. The key technology directions 
include:

n Tools and methods for system-level design capture, performance and 
requirements analysis, and debug

n Methods for core-based top-down design with improved support for 
customization, verification, and security

n New synthesis and floorplanning tools and methods addressing more 
effective deep sub-micron ASIC design, high-speed data path design, 
and low power design

n Advanced verification methods addressing high-speed simulation and 
emulation, timing verification, and formal verification

n Advanced design-for-test strategies

n Advanced logical/synthesis methods targeting datapath and clock tree 
generation, and interconnect/gate timing optimization

In order to enhance productivity, all technology advances must also be 
matched by corresponding advances in design methodology. EDA 
vendors, who supply most of the new technology, are showing an 
increasing willingness to provide expert consulting and training in 
methodology.
1-6 A Top-Down Approach To IC Design v1.2
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The Challenge to 
Productivity

For the last ten years designers have struggled to keep pace with 
siliconization trends. For the top 25% of the largest ASICs developed, 
design complexity has increased 25X. Meanwhile designer productivity 
levels have only risen by 5-8X [Collett International, 1994]. The challenge 
of adopting new technologies while maintaining productivity is clear. For 
example, Sematech has initiated EDA productivity studies in an effort to 
drive the rapid adoption of advanced design methods in order to keep pace 
with the rise in silicon potential.

Electronics companies just making the transition to top-down design 
methodologies must plan and execute effectively to realize potentially 
large productivity gains in product development. 

Some companies have been able to implement new technologies and 
methodologies and measure the positive results as well. The results of a 
study from Ericsson Telecommunications, for example, show that it was 
possible to realize a 50% improvement in design performance and cost by 
investing in high-level system design and verification. These results 
compared to only a 20% improvement based on optimizing a design after 
implementation. 

Figure 1-3 Design Effort vs. Implementation Improvement

Productivity gains which keep pace with advancement in electronics and 
semiconductors requires a continuous focus on product development pro-
cess improvement. As was shown earlier in Figure 1-1, the overall compet-
itiveness of a company is, in part, is determined by the performance of its 
product development process. With ever higher degrees of electronics in 
the most high-technology products today, companies must focus more on 
the development process for electronics and ICs.

Some of the largest determinants of a company or product development or-
ganization to foster continuous improvement are culture and capacity for 

1 month 1 yearEffort Invested (person months)

Optimization
Improvement

50%
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Design

Logic-Level Implementation

Source: “System Design in Silicon”
by J. Johanasson, Ericsson
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Success Factors in the Transition to Top-Down Design
change which can be assessed by evaluating four basic questions which are 
at the heart of process redesign:

n How does the company’s product development process compare to 
others?

n How will the product development organization gain a performance 
advantage?

n What will this mean to the company?

n How will the product development organization be converted? 

A company’s ability and willingness to drive for answers to these ques-
tions will realize the initial steps to process redesign steps which can result 
in higher levels of productivity and effectiveness. A complete process re-
design process involves the following range of activities:

n Defining clear process measures and evaluating current performance

n Selecting improvement strategies

n Defining improvement objectives and metrics

n Evaluating the impact and ROI of improvement options

n Identifying process architects and owners

n Planning implementation and transition for the organization

n Identifying roles for 3rd party consulting

Defining Process 
Measures to Evaluate

The audit and evaluation of a product design process must target all rele-
vant process measures which effect the overall outcome. There are several 
types of process measures which have been defined from the following 
definition of process by Tenner and DeToro (1997):

“One or more tasks that add value by transforming a set of inputs 
into a specified set of outputs (goods or services) for another per-
son (customer) by a combination of people, methods, and tools”. 

The relationship of these types of process measure is shown in Figure 1-4 
and include:

n Outputs 

Design results in the form of product features, attributes, and values 
delivered to the customer.

n Process 
1-8 A Top-Down Approach To IC Design v1.2
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Design effort and activities employed to render design results 
including the process, methodology, tools utilized by people

n Inputs 

Capability and capacity of the team and design environment, and the 
input specification for the product and its development

n Outcome 

Outcome is typically measured by customer satisfaction based on 
meeting initial product expectations.

 
The selection of process measures must consider making sure the measures 
are:

n Directly measurable

n Clearly defined and agreed upon

n Independent of factors which are beyond the control of the process. 

Thorough mapping of the processes used in product development is typi-
cally carried out using two different methods concurrently. These methods 
approach mapping from opposite perspectives yet combine to yield a com-
plete understanding of the processes and subprocesses map.

n Decomposition

Mapping starts with looking at how the system operates on the work. 
Processes are understood top-down. The system is dynamic and 
changes based on the specific workloads.

n Synthesis

Mapping starts with looking at how work is performed on the system. 
Processes are understood bottom-up. The system is a collection of 
static resources or functions with defined interfaces.

Only after building a complete understanding of how an organization ful-
fills its mission, the core processes can be identified. Core product devel-
opment processes most significantly and directly impact the overall 
performance and need to take the highest priority in improvement plan-
ning. Core processes have several characteristics including:

n Crucial to business success

n Strategic importance into the future
 Introduction 1-9
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n Customer impact

n Cross functional

Figure 1-4 Performance Measurement Model

Typically design process optimization will target core processes and define 
improvement objectives which come in all four categories - inputs, pro-
cess, outputs, and outcome. Therefore good process measurements are 
needed to provide a reference on which to base improvements to the prod-
uct development team, methodology, and technology. Measurements 
should evaluate both efficiency and effectiveness. So it is important to se-
lect criteria to measure which involves people, process, and technology 
and determine the overall product development function’s performance. 

Most product development organization’s will rate themselves as satisfac-
tory or healthy. Companies who are typically considered industry drivers 
will have superior or even world-class product development performance.

“If you’re not keeping score, then it’s practice.”

Process OutputInput Outcome
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Figure 1-5 Evaluating Process Performance

Figures 1-6, 1-7, and 1-8 provide examples of performance measures used 
to evaluate design process effectiveness.

Figure 1-6 Input Performance Measures

Figure 1-7 Process Performance Measures
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Figure 1-8 Output Performance Measures

Selecting the 
Improvement Strategy

Assessment of the process condition in the current state by means of pro-
cess performance measures is required to base any goal setting and imple-
mentation planning. Several different process redesign strategies which 
are utilized throughout industry today are contrasted in Figure 1-9 an in-
clude:

n Continuous improvement 
 

Elapsed project time

Total project tasks

Average design iteration time

Number of parallel of design tasks

Number of incremental design tasks

Number of serial design tasks that could be parallel 
or incremental

Productivity measures for design (gates/day), and 
verification (cycles/day)

Design density (gates/mm2)

Operating frequency (Mhz)

System throughput (operations/sec)

System architecture efficiency 
(throughput/density)

Power factor (operations/watt)

Verification coverage (cycles simulated,% of 
system modes tested by AVTs)

Fault coverage (% faults detected)

Reliability (MTBF)

Price ($/component)
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Practice ongoing cycle of incremental gains in performance through 
continuous assessment, gap analysis, and selective process 
improvement to known processes.

n Benchmarking 
 
Leapfrog industry performance through combining best practices of 
one or more competitors.

n Re-engineering 
 
Drastic and rapid performance improvement accomplished by new 
process design. Characterized as “breaking the rules”.

Figure 1-9 Process Redesign Strategies

Selection of improvement strategies must balance the level of investment 
of critical people and funds against desired goal to elevate product devel-
opment performance. Factors considered in this process include:

n Magnitude of change
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However, these factors alone may not be sufficient in making a selection. 
The product development organization must also consider more subjective 
selection criteria and assess its ability to carry out the planned improve-
ment using a specific process redesign approach. Such factors include:

n Level of strategic significance of process redesign to business success

R ed efin e
In d u stry

C reate  B e st
P ractice

M a tch  B est
P ractice

S in g le
F u n ctio n

C ore
P rocesses

S u p p ly  
C h a in

E xten d ed
V alu e  C h a inM

ag
ni

tu
de

 o
f C

ha
ng

e

S trea m lin in g

B u sin ess
P ro cess

O p tim iza tio n

E n te rp rise
T ran sform a tio n

S trea m lin e
F o r

E ffic ien cy

S co p e  o f C h a n g e

C on tinuous Im provem en t

B enchm ark ing

R eeng inee ring

S tra teg ic
A lignm en t
 Introduction 1-13



Success Factors in the Transition to Top-Down Design
n Culture and attitude of organization to change

n Maturity and stability of management team

n Levels of capital to invest - people and financial

n Skill levels of process redesign team

Together these factors combine to form a total mindset to process redesign 
which can be summed up as follows:

“You can’t redesign processes unless you know what you’re trying 
to do. What you’re after is congruence among strategic direction, 
organizational design, staff capabilities, and processes you use to 
ensure that people are working together to meet the company’s 
goals.”
PAUL ALLAIRE, 1995, CEO of Xerox

Defining Process 
Improvement Objectives 
Clearly

Any methodology improvements should have the goal of helping a 
company achieve certain key business objectives. Some typical business 
objectives that can be accomplished by methodology improvements 
include

n Shorten product development schedules

n Lower product cost to manufacture

n Lower product cost to develop

n Increase functionality or performance

n Increase flexibility for related products

n Increase reliability of hardware and software integration

A company’s product development strategy may vary based on the scope 
of the product, type of siliconization (FPGA, ASIC, or deep sub-micron 
ASIC), and design methodology. This is why no two product development 
environments are the same. In fact, two companies involved in the exact 
same niche market will probably have very unique product development 
environments, formulated by the past experiences, current goals, and 
objectives of the project leaders. The choices made at any point by this 
team often have significant impact on the approach to product 
development and its downstream success.

For example, in the area of design verification, one design team may invest 
significant engineering and computing resources in full system-level 
simulation, whereas another might instead adopt a prototype emulation 
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Success Factors in the Transition to Top-Down Design
approach. Although the decisions are different, each may be appropriate to 
the current objectives and level of team expertise.

Identifying Process 
Owners

Ownership and responsibility in planning and leading the transition to new 
tools and methods is crucial. Project leaders and technology leaders need 
to be established. These individuals will be responsible for defining and 
managing specific design methodologies and the design environment. 
Project leaders need to be established for:

n Verification and simulation

n ASIC and FPGA synthesis, chip composition

n Design for test

n ASIC sign-off and libraries

n CAD

n Networks and workstations

Project leaders should consider the cost of adopting new technology. 
Investment levels differ for each technology and methodology as 
illustrated in Figure 1-10.

Figure 1-10 Cost of Technology and Methodology Adoption

Project leaders should articulate the decision criteria governing a 
methodology shift. For example, the following criteria might be used to 
evaluate the decision to move into synthesis and system-level simulation. 
Note that all of these goals are measurable:

n Reduce overall product development schedule by 50%
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Success Factors in the Transition to Top-Down Design
n Reduce time to re-spin and re-validate the design by 50%

n Reduce the chance that a costly re-spin would be required from 100% 
to 25%

n Decrease time anticipated for debugging hardware prototypes from 
nine months to three months

n Hire five new engineers to plan/train on use of new methods

The need to define measures is imperative. Top-down design is only as 
good as the people who practice it. In a recent design contest held at an 
EDA vendor’s user group meeting, 14 design engineers competed for the 
best design. The design example was a simple counter function. Despite 
the fact that the group had similar experience levels and over 20 ASICs 
among them, the results were extremely diverse, varying by 60% in size 
and 100% in delay.
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Planning for 
Implementation and 
Transition 

Adoption of new methods and technologies must be executed at a pace that 
allows the design team to learn how to employ them effectively. 
Companies typically underestimate the time and training required to 
transition a team to a new methodology or process, as illustrated in Figure 
1-11. 

Figure 1-11 Expected versus Actual Process Improvement

These shortfalls are usually attributed to 

n Difficulty in effecting a change in culture

n Cost of getting started

n Training investment

n Selection process for new technology

n Design methodology development supporting new technology

Evolutionary shifts in the design process can come from factors such as 
improved designer experience, continual process changes, and incremental 
tool improvements. This approach normally takes two to three design 
projects before the expertise levels fully exploit the given design 
methodology. 

Larger, more radical methodology shifts come in the form of paradigm 
shifts which occur from time to time and result in dramatically improved 
designer productivity and reduced design intervals. Examples of paradigm 
shifts include: 
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Success Factors in the Transition to Top-Down Design
n Shift from schematic capture to HDL synthesis

n Shift from prototyping boards in the lab to system level simulation 

n Shift from writing test vectors to ATPG and boundary scan tools 

n Shift from writing functional vectors to C and C++ software drivers, 
automatic test bench generation, verifiers, and multi-level regression 
(system simulation)

A Role for Third Party 
Consulting

Third party consulting can often provide critical support in a transition to 
a top-down design approach. There are a growing number of consulting 
firms that provide a range of services including:

Consulting Services to help plan and design an appropriate product design 
environment through

n Tools selection and independent benchmarks

n ASIC vendor selection

n Technology library development

n Organization planning and recruiting

Engineering design services to provide resources for ASIC and system 
development, including

n ASIC and FPGA development

n Design migration

n DFT services

n Model development

Implementation services to develop the team’s expertise, including

n HDL and modeling style training

n Top-down design transition training

n Methodology and process support for design, simulation, synthesis, 
and test

Third party consulting can often mean the difference between costly 
“on-the-job” training versus starting a project with the expertise required.
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Example of Top- 
Down Design 
Success

Fulcrum Telecommunications, a subsidiary of Fujitsu, is an impressive 
example of matching business objectives with product development 
environment planning and implementation. In the very competitive 
telephone switching market, Fulcrum has managed to successfully 
transform its business and regain its position in the market with the 
successful launch of its next generation switch. 

Plagued by reliability issues which caused long delays in getting and 
keeping new installations on-line, Fulcrum decided that quality and 
reliability issues were top priority for this project. Enormous erosion of 
price levels and an explosion in features also made extensive siliconization 
a must. Unlike many of Fulcrum’s larger competitors who had dedicated 
resources to take on the extensive methodology definition and 
cross-training, Fulcrum leveraged external consultants to define the design 
methodology and train the team. 

Thorough system verification with rigorous design management and 
process guidelines, including numerous design reviews and consulting 
contracts, were crucial in making this product development environment 
effective for Fulcrum engineers. The telephone switch, which was 
comprised of six ASICs, ten FPGAs, and 28 PCBs, proved to be the most 
reliable and robust product ever developed by Fulcrum. The first customer 
product shipment was installed and carried traffic that same day.
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Basic Principles of Top-Down Design

Understanding the basic principles of top-down design is the first step 
toward implementing the best design practices. These principles influence 
the objectives for design methodology development. The top-down design 
approach is based on the following principles:

n Use a hardware description language (HDL) or other high-level 
programming language to create system and subsystem models as well 
as reusable cores

While schematic capture is an appropriate design entry technology for 
a bottom-up design approach, the Verilog and VHDL languages offer 
a level of abstraction that makes larger and more complex designs 
easier to understand. HDLs have multiple abstraction levels, from 
analytic, behavioral, RTL, and gate-level descriptions. A high-level 
programming language such as C or other high-level design entry 
technologies may be appropriate for system models, but current 
mainstream synthesis tools require RTL descriptions in Verilog or 
VHDL. 

n Validate designs early by developing a system-level verification 
environment up front

A system verification environment includes a set of testbenches and 
models and a detailed, formal test plan for validation of the system. 
The models and testbenches are a “golden” representation of the design 
that the team can use to qualify the design of the components. The test 
plan ensures that the team has considered how to verify all critical 
aspects of the design as it develops. The verification environment 
allows the design team to validate the system before implementation 
and to verify implementations at the RTL level, gate-level, and 
mixed-level.

n Automate the implementation of the design using synthesis

Synthesis and optimization technologies allow the design team to 
explore various implementations of the RTL design before committing 
to a particular vendor or a particular implementation. This flexibility 
provided by synthesis tools is critical to attaining performance and 
designer productivity of large scale ASIC and FPGA designs. 
Synthesis also enables the reuse of core technologies. 

n Develop a design for test (DFT) strategy

Today’s increasingly fast, complex designs offer a formidable 
challenge to the test engineer. Higher gate-to-pin ratios and a higher 



Basic Principles of Top-Down Design
density of board-level interconnects make the traditional bed-of-nails 
board test unfeasible. The only alternative is to develop a test strategy 
up front and allow test requirements to influence the implementation of 
the design, using JTAG, scan, BIST, and other digital logic techniques.

n Provide for consistent data flow between logical and physical design 
processes for deep submicron ICs and high-speed PCBs

Logical and physical design of ASICs are no longer separate processes 
thanks to the advent of deep sub-micron ICs. Chip density and 
performance after physical design often stray from logical design 
estimates because of interconnect delays, and the floorplanning of 
datapaths, cores, RAM/ROM, and system clock distribution. 
Concurrent optimization of the logic and physical design based on 
design timing constraints is now required. Chip-level timing analysis 
and optimization must also be driven by accurate deep sub-micron 
timing models. 

n Manage design data effectively and define design procedures that 
simplify the effort of iterating design steps

The amount of design data generated in the process of describing the 
design, verifying it, and then constraining and analyzing its 
implementation is overwhelming. In addition, the scope of the design 
and the breadth of expertise required mean that most design teams have 
many members. Tracking the status of the various design components 
and ensuring the integrity of the design data at all phases of 
development makes a design data management strategy essential. 

The core elements of the top-down design process involve HDL modeling 
of the system and its ASIC components, a comprehensive verification 
environment, logic synthesis, constraint-driven logical/physical ASIC 
design iteration process, a complete design-for-test process, and a design 
environment supporting design data management and release control.
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The Top-Down Design Flow and Schedule

Every product development team will implement a design process 
involving a top-down methodology that best fits the product characteristics 
and project schedule. Figure 1-12 is a typical top-down design flow 
diagram. The diagram shows that flow begins with the development of 
system models and a verification environment (high-level system design). 
The design team can also start early on to develop a test strategy and to 
select and to validate vendor libraries.

Once these up-front tasks, including partitioning, are complete, the team 
can begin the implementation of each block in parallel. Once the blocks are 
modeled at the RTL level, their functionality needs to be verified within 
the context of the system. After synthesis and optimization, the gate-level 
implementation must also be verified within the system context. 

Chip integration and sign-off brings all the implemented design blocks 
together for functional and timing verification, design rule checks, pattern 
generation, and ASIC vendor sign-off. This part of the design process is 
very compute-intensive, requiring exhaustive simulations at multiple 
levels of abstraction. A well-defined test strategy, automated regression 
techniques and efficient use of network resources help to meet this 
challenge. 

Because of the increasing density of designs, accurate floorplanning, or 
consideration of the overall effect on the design due to the physical aspects 
of the design and process, is a requirement at all stages of the design 
process. At the high-level, front-end floorplanners can help to derive 
accurate boundary conditions, wire models, and timing budgets for design 
blocks. During block implementation, silicon synthesis tools drive 
synthesis and optimization with the understanding of the physical effects 
on timing and loading. Floorplanning tools are used during chip-level 
integration to ensure that the design can be placed and routed successfully. 
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The Top-Down Design Flow and Schedule
Figure 1-12 IC Design Flow Diagram

Develop Architecture
Verification Plan (AVP)

Code RTL Modules

Run Synthesis/Optimization 

Define RTL Design Hierarchy 

Run Quick Synthesis/Area Estimation

Timing Verification

 using default Wire Models

Run Datapath Placement

Run Critical Path Resynthesis

Clock Tree Generation

Placement Optimization

Global/Special Route &

Verification & 

Post-Placement 

Run Timing Verification

Adjust Floorplan

Evaluate Embedded Blocks

Golden Block Timing

Design/Synthesize Test Logic

Chip Logic Design Flow Block Logic Design Flow Physical Design Flow

HLPE-Based Delay Calculation

GDSII

Golden Chip Netlist

System Design Flow

Initiate System 

Define Workload Characterization &

Partition System IC into

 & Algorithmic Models

Evaluate System Architecture 

Select Processors, Busses, Components

Product Specification

Develop IC Physical Design Plan

Develop and Sign-Off 

& Die Size Estimation

Golden System & IC 

Timing 

Run Initial Placement

Run Timing Verification 

Mfg Test Flow

Golden Test Vectors

ATPG / Fault Grading / IDDQ

Run Pattern Validation

Generate Manufacturing Tests

Post-Route Delay Calculation
2 1/2D

Run Gate Functional Verification

Define I/O Timing Budgets

(including Scan Insertion)

Run Chip-Level Timing Verification

Capture Early Floorplan

Develop & Debug AVTs & 
System Models

Define Power Architecture & 
Estimate Power Dissipation 

Develop System Behavioral
 Models, ISS, SW Drivers

Define DFx Architecture Spec 
Estimate Test, Reliability, Mfg

Select IC Package &
Estimate Thermal Requirements 

Select Target IC Semiconductor
Library and Process 

Evaluate Microarchitecture HW/SW 
& Logic/Circuit Trade-offs

 

Functional Units

Evaluate and Sign-Off System 

 
Microarchitecture Performance

Define Clock Architecture & 
Estimate PCB-level Skew 

Finalize Target System Performance, 
 

Develop Chip Implementation
Verification Plan (CIVP)

RamBIST, JTAG/TAP, Boundary Scan 

Develop Block Implementation
Verification Plan (BIVP)

Estimated Block 

Run Timing Verification

Develop Simulation Target
Configurations and Stub Models

Custom A&D Cells, RAM/ROM, Cores

Design Chip Periphery including
Data, Clock, and Test I/Os

Develop & Debug BIVTs &
 Block-Level RTL Model Configurations

& Drive Optimization

Hierarchical Extraction

Develop/Debug AVTs/CIVTs & 
Target RTL Model Configurations

Run RTL Power Analysis 

Run Post-Placement
Gate/Transistor Power Analysis

 

Run Timing Verification

Run Functional Gate-level Verification 

Run Functional Gate-level Verification

Adjust Floorplan for
Routing Resources

Run AC Vector Verification 

Sign-Off Route

Sign-Off Final Placement 

Sign-Off Clock Placement 

Sign-Off Clock Tree

Sign-Off Chip Logic Netlist

Sign-Off Chip Logic Placement

Sign-Off Route (Release for Prototype)

Golden AVTs/CIVTs

Golden Chip Characterization 

Sign-Off Detailed Block Placement

Golden Block Netlist 

Characterization 

IC Design Specification

S12

Golden Architecture Specification

Run Functional Gate-level Verification
Sign-Off Block Logic Placement 

Run Functional Gate-level Verification
Sign-Off Block Logic Placement 

Region-Based 
Wire Models

Sign-Off Mfg Vectors

Post Placement 
Delay Calculation

Design Specification

Cores, Memories and Other Resources

Delay Calculation

Size, Power, Cost 

Release to Mfg (RTM)

Timing, Power

Perform Scheduling & Operator
Selection for Hardware Resources

Chip Planning Flow

Release to Chip Planning (RTCP)

Develop Architecture Performance 

Using CIVTs

Constraints

Clock 
Constraints

Placement-Based
 Delays

Gate Count

Early Block 
Gate Count
& Timing

Initial Block Placement & 

Placement ECO

Extracted
Wire Loads

Post Placement 
Delay Calculation

Placement ECO

Placement ECO

Placement-Based
 Delays

Placement-Based
 Delays

Timing 
Constraints

Extracted
Wire Loads

Extracted
Wire Loads

Extracted
Wire Loads

Final Chip Route &
Search/Repair

Block Interconnect

Extracted
Wire Loads

Timing 
Constraints

Timing 
Constraints

Router-Based
Delays 

2 1/2D
HLPE-Based

Delays 

Architecture Specification 

Performance

& Translation

Pin Optimization 
 Introduction 1-23



The Top-Down Design Flow and Schedule
Figure 1-13 shows a sample project schedule for implementing this 
methodology. The intent of this schedule is to show the major activities 
and milestones in the process as well as define the relative duration and 
dependencies of these activities. The actual time line will vary depending 
on the design.

Figure 1-13 Project Timeline

Figure 1-14 shows the tools associated with each part of the block and chip 
level implementations as well as the design environment. The tools are 
from a variety of sources including Cadence Design Systems, Synopsys, 
the Free Software Foundation, and UNIX utilities found on most 
workstations.
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Figure 1-14 Design Tools
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Summary
Summary

Effective PDEs can create strategic advantages when they enhance a 
company’s ability to produce advanced, high quality products faster and 
more cost-effectively than competitors. Best practices in top-down 
methodology for ASIC and FPGA-intensive systems requires continual 
investments in the people, process, and technology of a company’s PDE. 
Success using top-down design require a solid foundation in the basic 
principles of the methodology and a focus on continuous development of 
the methods used. Product development objectives need to impact overall 
business objectives as directly as possible to exploit market opportunities.
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Design Environment: the Challenges

Virtually every design team and every project has to deal with many 
complex design environment issues.

First, the sheer amount of design data required to describe, constrain, and 
automate the implementation and verification of a design is overwhelming. 
It is very common to have several thousand data files of many different 
types, including HDL source files, simulation testbenches, synthesis 
constraint files, and regression scripts, to name just a few. 

The scope of the typical design project, the breadth of expertise required, 
and the time-to-market pressures mean that large design teams are the 
norm. Without an adequate design environment, it is difficult for multiple 
designers to share and modify the design files while maintaining the 
integrity and consistency of the data.

As files are modified and new files are added, the relationships between the 
files become more complex. The design environment needs to facilitate the 
grouping or configuration of related files.

Many different types of processes, including updates, simulation runs, 
synthesis runs, and other types of runs, need to be run dozens or even 
hundreds of times during design development. The design team must also 
periodically integrate and test the design models to ensure that changes in 
one portion of the design have not caused problems in other parts.

Given these complexities, it is essential to have a well-defined design 
environment and consistent data management schemes so that the design 
process is as predictable and easy to automate as possible. An effective and 
efficient design environment needs to address objectives in the following 
areas:

n Design data organization

n Source control

n Configuration management

n Automated processes

n Revision control

n Project tracking

The remaining sections of this chapter discuss these objectives in more 
detail.
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Design Data Organization

An effective strategy for design data organization meets the following 
objectives:

n Provides a logical and consistent method for storing all types of design 
data, including source files, configuration files, libraries, executables, 
and run results

n Gives designers access to the latest tested design data for the entire 
design

n Isolates designers as much as possible from untested, unstable work in 
progress

Design data is typically organized and stored in design hierarchies, or 
trees. Concurrent development (product development by a team of 
designers working in parallel on portions of the same design) typically 
requires three design trees:

n Archive tree

An archive tree is a set of directories on a disk that is the repository for 
the files that are under source control. A check-out command copies 
the appropriate version of the file or files from the archive directory 
into the designer’s local tree.

n Local tree

This set of directories is created by each designer for the purpose of 
having a work area isolated from other designers. Each designer makes 
modifications to checked-out source files in this local tree. The 
designer tests the modifications and then checks the modified file back 
into the archive tree.

n Release Tree

This set of directories contains a known good version of the entire 
design. Because the files in this tree have passed more rigorous tests 
than the files in the archive tree, designers should reference this 
hierarchy to get the most recent stable version of the design files 
needed to test modifications within the context of the entire design. 

All of these trees typically have the same directory structure. Figure 2-1 
shows the movement of files between these three design hierarchies.
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Figure 2-1 Movement of Files between Design Data Trees
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Source Control
Source Control

Source control is a system for archiving versions of files in a central 
location. The objectives of the source control system are to

n Allow multiple designers access to the same source files while 
preserving the integrity of the data

n Allow the designers to roll back to an earlier version of the design 
easily

A source control system typically allows designers to

n Check out a file to view it

This feature allows multiple designers to view the file at the same time.

n Check out a file to modify it

When a designer has checked out a file to modify it, the system 
prevents other team members from checking it out for modification.

n Check in a modified file

When a designer checks in a modified file, the previous version is 
archived, and the checked-in version becomes available for other 
designers to check out. The previous versions of the file are also still 
available for check out.
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Configuration Management

Configuration management is the grouping of a number of distinct files 
together into a defined set, or configuration. There are two basic objectives 
that configuration management addresses:

n Provide design abstraction management

In top-down design, a model is first described at a high level of 
abstraction and then progressively refined to a more detailed 
representation. Multiple configurations are necessary because different 
process steps require different sets of files as inputs. It is important to 
be able to define these configurations once and reference them when 
needed. These configurations should be simple and explicit so that they 
can be used as important sources of information about the design.

n Provide version management

In addition to design abstraction, there will also be multiple versions of 
each file. The method for configuration management will also need to 
be able to specify which versions of each file are to be used.

The design environment should support a solution that meets both of these 
objectives.
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Automated Procedures
Automated Procedures

In order to create, verify, and implement a design, the design team has to 
repeat many procedures dozens or perhaps hundreds of times. These 
procedures typically involve invoking a simulation, synthesis, or timing 
tool with a particular configuration of design data, and then storing the 
results. The procedure may also include some post-processing of the 
results to facilitate analysis.

The objectives for automating these types of procedures are

n To reduce the time needed to repeat these procedures manually

n To reduce the errors often involved in repeating the procedures 
manually

In addition, there are many interdependencies between files. For example, 
if a component of a design is modified, the other parts of the design that 
reference that component need to be updated to reflect the modifications. 
Automating these update procedures is particularly crucial to maintaining 
the integrity and consistency of the overall design.
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Revision Control

Although the terms source control and revision control are often used 
interchangeably, in this document the term revision control refers to 
process for promoting and testing files for release, either to the rest of the 
design team or eventually to the ASIC vendor.

The goals of this process are to

n Preserve the overall integrity and consistency of the design

n Provide a means for tracking progress against project milestones

n Test the procedure for releasing files to the ASIC vendor

A single designer (the release manager) should be given the responsibility 
of chip integration. On a regular basis, this release manager checks out 
from the archive tree the latest versions of the source files for the entire 
design. Working in a pre-release area, the release manager runs the 
regression tests. If the percentage of regression tests that passed is 
satisfactory, the release manager moves the contents of the prerelease area 
to the release tree.

The design team needs to agree on the degree of testing required before a 
file can be checked into the archive tree. This check-in process is not 
automated. At minimum, each designer should perform unit tests before 
checking files into the archive tree, to determine that the modifications 
made have the desired effect and that the files involved are self-consistent.
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Bug Tracking

Bug tracking systems are not a requirement for every project. In small 
design teams, where the designers are responsible for verifying their own 
blocks and there is only one person in charge of system/chip level 
verification, it may be adequate to use email and rely on each designer to 
track his own bugs.

If the design team is large and designers frequently find bugs in portions 
of the design that other designers are responsible for, the team should adopt 
a more formal approach to reporting bugs. 

The goals of a bug tracking system are to

n Provide a way to report bugs to the person who is responsible for fixing 
them

n Provide a way to find out the status of a particular bug

n Provide a means for tracking new and fixed bug report rates

An additional benefit of a bug tracking system is that the team can use the 
new and fixed bug rates as one way of measuring progress against project 
milestones. This benefit must be weighed against the cost of implementing 
and maintaining the system.
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Overview
Overview

This chapter describes a particular design environment implementation 
based on the following software tools:

n UNIX make utility

n RCS

n GNATS

Together with common directory structures and file naming conventions, 
these tools can create a design environment that meets all the goals listed 
in Chapter 2, “Design Environment Methodology”:

n Provide a logical and consistent method for storing all types of design 
data, including source files, configuration files, libraries, executables, 
and run results

n Provide designers access to the latest tested design data for the entire 
design

n Isolate designers as much as possible from untested, unstable work in 
progress

n Allow multiple designers access to the same source files while 
preserving the integrity of the data

n Allow the designers to roll back to an earlier version of the design 
easily

n Provide a means of configuring design data by abstraction level or 
version

n Reduce the time needed to repeat these procedures manually

n Reduce the errors often involved in repeating the procedures manually

n Preserve the overall integrity and consistency of the design

n Provide a means for tracking progress against project milestones

n Test the procedure for releasing files to the ASIC vendor

n Provide a way to report bugs to the person who is responsible for fixing 
them

n Provide a way to find out the status of a particular bug

n Provide a means for tracking new and fixed bug report rates
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Design Data Organization

Designs typically have a hierarchical structure shown in Figure 9-1. This 
structure is used as a basis for the directory structure described in Figure 
9-2.

Figure 9-1 Design Hierarchy

TOP

A B

AA AB BA

BAA BAB
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Figure 9-2 Directory Structure

Figure 9-3 describes the function of each of the directories shown in Figure 
9-2.

Figure 9-3 Directory structure summary

src/

TOP/

etc/ lib/ bin/

TOP.v[hd]
TOP_test1.v[hd]
TOP_test2.v[hd]
A.v[hd]
A_test1.v[hd]
B.v[hd]
B_test1.v[hd]
B_test2.v[hd]
A_SYN.v
B_SYN.v
AA.v[hd]
BA.v[hd]
AB.v[hd]
BAA.v[hd]
BAB.v[hd]

TOP_1.cst
TOP_1_rtl.fs
TOP_2.fs
TOP_1.scfg
TOP_2.scfg
A_1.cst
A_1.cfg
A_1.scfg
B_1.cst
B_1.cfg
B_1.scfg
global.cst

asiclib1/
asiclib2/
worklib/

results/

syn
sim
checkin
checkout

TOP_test1.log
TOP_test2.exp
TOP_syn.report
A_test1.log
A_test2.log
A_syn.report
B_syn.report

work/

cds.lib
hdl.var
vlibs
simruns/
synruns/
timingruns/

global.h
TOP.h
A.h
aliases.h

include/

fspec.doc
B.readme
A.readme

docs/

Directory Description
include Location for files containing shared HDL code, such as 

header files in Verilog, VHDL packages, or memory data 
files

src Location of HDL source files, including RTL files, test 
fixtures, and synthesized netlists

src/RCS Location of the archived versions of files
etc Location of design configurations, simulation configura-

tions, synthesis command files, and waveform restora-
tion files

lib Location of libraries, including reference libraries, ASIC 
libraries, and VHDL design libraries

bin Location of scripts specific to this particular project
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hd
File Naming 
Conventions

In order to make directory and file structure consistent and to facilitate 
automated procedures, file naming conventions are a requirement. Figure 
9-4 describes the recommended file naming conventions.

Figure 9-4 uses the following terms:

n <design> refers to the module name of the block that the particular file 
is associated with. 

n <ident> is a user-definable name to distinguish between multiple types 
of the same file. For example, there can be many different design 
configurations or synthesis command files for a particular block in the 
design. rtl.cst

n <test> is a user-definable name to label a particular test case.

work Location for invoking simulation, synthesis, or timing 
runs

work/timingruns Location of timing analysis run directories
work/simruns Location of simulation run directories
work/synruns Location of synthesis run directories
results Location of simulation results, synthesis report files, oth-

er relevant report files
docs Location of any relevant documentation related to the de-

sign, including functional specs

Directory Description

Figure 9-4 File Naming Conventions

File Type Verilog Extension VHDL Extension

RTL Source File <design>.v <design>.vhd
RTL Design Configuration <design>_rtl.fs cfg_<design>_rtl.vhd
Testbench File <design>_<test>.v <design>_<test>.vhd
Synthesis Command File <design>_<ident>.cst <design>_<ident>.cst
Simulation Configuration <design>_<ident>_<test>.fs cfg_<design>_<ident>_<test>.v
Synthesized Netlist <design>.vs <design>_syn.vhd
Synthesized Design Configuration <design>_syn.cfg cfg_<design>_syn.vhd
SHM Database <design>_<test>.shm <design>_<test>.shm
Simulation Log File <design>_<test>.log <design>_<test>.log
Simulation Expected Results <design>_<test>.exp <design>_<test>.exp
Waveform Restoration File <design>_<ident>.wrf <design>_<ident>.wrf
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Source Control

RCS/SCCS is a standard revision control and source control system 
available on UNIX. Figure 9-5 summarizes the RCS command set required 
to implement an effective design environment.

Figure 9-5 RCS Command Set

Checking In a File To check in a file, the designer follows this procedure:

1. Change directory to the local /src directory.

2. Type the following at the UNIX prompt
ci file.v

RCS responds with the following message
RCS/file.v,v  <-- file.v
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single '.' or end of file:

3. Type a description of the changes made to the file.

RCS removes the file from the local directory and copies it to the RCS 
directory in the archive tree.

Notice that the command prompts the designer for a description of the 
changes by asking for a log message. This can be multiple strings followed 

Command Description

ci Check in revisions from work area 
to RCS tree.

ci -l Check in revisions from work area 
to RCS tree and maintain the lock 
for modifications.

co -l Check out file from RCS for write.

co Check out file from RCS for read
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by a single “.” on a line by itself. It is also possible to give the description 
in the command line as shown below

%ci -m"Changed logic level on rst port.\
." file.v

Alternatively, to retain the lock on the file so that edits can continue to be 
made, the designer can use the -l option as shown below. This command 
does a check-in and then performs an automatic check-out for 
modification.

%ci -l -m"Changed logic level on rst port.\
." file.v

Note that all of these commands can take multiple file names as arguments 
and therefore wildcards such as “*.v” can be used.

Checking Out a File To check out a file, the designer follows this procedure:

1. Change directory to the local /src directory.

2. Type the following at the UNIX prompt

co -l file.v

RCS sets the lock on the file and makes a copy of the file in the local /src 
directory with the following message: 

RCS/file.v,v  -->  file.v
revision 1.1 (locked)
done
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Configuration Management

There are two type of configurations

n Design configurations

n Simulation configurations

The following sections discuss these two types of configurations.

HDL Design 
Configurations

Design configurations contain the necessary information to define exactly 
what files or cell descriptions make up a particular block or entire design. 
These files are used as input to simulation, synthesis, timing analysis, and 
fault grading to specify the source files that define the design block. 

The run directories for these tools are created within the simruns, synruns, 
timingruns, and faultruns respectively. timingruns and faultruns 
directories will exist at the top level of the design to be used during the full 
chip integration process. 

Verilog Design 
Configurations

A Verilog HDL configuration is a list of files that contain all of the 
modules that make up the design, not including the simulation test bench. 
File names should use relative path names, because the absolute paths in 
the local, archive, and release trees are different. For example

../../../src/A.v

../../../src/AAA.v

../../../src/AAB.v

It is also possible to use -y and -v options to specify a configuration. This 
method uses a Verilog-XL search path algorithm to resolve all module 
definitions in the design given the top level.

The designers may create more complicated design configurations by 
explicitly creating configuration files that are an arbitrary mixture of 
abstraction levels.
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Designers can create these configurations easily by using some basic 
UNIX commands. The example below shows the creation of a 
configuration containing all the .v files visible in the /src directory. This 
would be run from the local /etc directory.

% ls ../src/*.v |sed 's:^:../../:' > newcfg.cfg

VHDL Design 
Configurations

A VHDL configuration has a syntax defined within the VHDL language 
that is independent of file system location. VHDL simulators provide an 
automated way to generate these configurations. Designers can also 
manually create configurations by editing a file which contains a VHDL 
configuration specification. An example of a VHDL configuration is 
shown in Figure 9-6.

Figure 9-6 VHDL Configuration

-- Configurations for top-level unit

VHDL_LIB.TOP:STRUCTURE

-- Configuration Model: Hierarchical 
-- No priority list of architectures specified

-- Configuration 
configuration CFG_MY_NAND_RTL of MY_NAND is 

for RTL 
end for; 

end CFG_MY_NAND_RTL;

-- Configuration

configuration CFG_MY_REG_RTL of MY_REG is 
for RTL 
end for; 

end CFG_MY_REG_RTL;

-- Libraries

library VHDL_LIB;

-- Configuration

configuration TOP_STRUCTURE_CFG of TOP is 
for STRUCTURE 

for OTHERS: MY_NAND use configuration 
VHDL_LIB.CFG_MY_NAND_RTL; 

end for; 
for OTHERS: MY_REG use configuration 

VHDL_LIB.CFG_MY_REG_RTL; 
end for; 

end for; 
end TOP_STRUCTURE_CFG;
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HDL Simulation 
Configurations

A simulation configuration contains all of the input that a simulation needs 
to run. This includes:

n A design configuration to tell the simulator what design to test

n A testbench to specify what test to use

n Simulation options to further control the simulation run

Verilog Simulation 
Configurations

A Verilog simulation configuration is very similar in structure to a Verilog 
design configuration. It is a file that contains the testbench, the design 
configuration, and any simulator options listed one per line. An example is 
shown in Figure 9-7.

Figure 9-7 Verilog simulation configuration
../../../src/design_test1.v

-f ../../../etc/design_rtl.cfg

+define+debug

+turbo+3

VHDL Simulation 
Configurations

A VHDL simulation configuration is in a format that is similar to the 
Verilog simulation configuration. The options and command line 
arguments must be specified one per line.

Figure 9-8 VHDL simulation command file
-OUTPUT top_str.sv.log 
-INPUT files/presyn_sv.cmd 
-BATCH 
-RUN 
-UPDATE 
-SOURCE 
-SHMDB top_str.c.shm 
VHDL_LIB.TOP:STRUCTURE/SIM
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Automated Procedures

To achieve the goal of design process automation, it is necessary to have 
an easy to use and repeatable method for invoking the following processes:

n Interactive RTL simulation

n Batch RTL simulation, which includes regression testing of multiple 
test suites

n Interactive gate level simulation

n Batch gate level simulation, which includes regression testing of 
multiple test suites

n Batch synthesis modeling style check

n Interactive logic synthesis

n Batch logic synthesis

n Interactive timing analysis

n Batch timing analysis

n Batch fault simulation

n Updating an entire sub-block

n Updating an entire block

n Updating the entire chip

n Updating the entire system

make is a UNIX utility that automates the running of flows and processes. 
make intelligently decides which steps in a design flow need to be rerun 
when certain inputs have changed. A corollary to this is that make verifies 
that a design is up to date and does not unnecessarily rerun steps such as 
simulation or synthesis.

Unfortunately, makefiles are somewhat cryptic and it is not desirable to 
require all designers to maintain or edit them. One way of integrating make 
into a design environment is to provide a script which will automatically 
create simple makefiles for specific simulation or synthesis runs and 
execute them. 

The procedure for invoking any design step such as synthesis or simulation 
is to type the command followed by the configuration name to be run. For 
synthesis, the configuration is a command file. This makes the path from 
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the interactive to batch runs very simple because the command file created 
during an interactive run can be used as the synthesis configuration.

As an example, assume the following input to a simulation run.

n Simulation Configuration: top_rtl_test1.scfg
../../../src/top_test1.v
-f ../../../etc/top_rtl.cfg
+turbo+3

n Design Configuration: top_rtl.cfg
../../../src/dut.v
../../../src/top_rtl.v

By typing "sim top_rtl_test1", the makefile shown in Figure 9-9 would 
be created and executed.

Figure 9-9 makefile for Simulation
.top_rtl_test1: ../etc/top_rtl_test1.scfg  
../etc/top_rtl.cfg ../src/top_test1.v ../src/dut.v ../src/top_rtl.v
    @echo "**********************************************************************"
    @echo " Simulation started \`top_rtl_test1' Simulation Configuration"
    @echo " Run Directory    : simruns/top_rtl_test1.run "
    @echo " "`date`
    @echo "**********************************************************************"
    @mkdir -p simruns/top_rtl_test1.run; \
    (cd simruns/top_rtl_test1.run; \
    verilog -f ../../../etc/top_rtl_test1.scfg); \
    touch .top_rtl_test1
 
../etc/top_rtl.cfg :
../etc/top_rtl_test1.scfg :
../src/top_test1.v :
../src/dut.v :
../src/top_rtl.v :

To create the Verilog makefile shown in Figure 9-9, a Perl script extracts 
the files upon which the simulation is dependent and builds the makefile. 
If this simulation has already been run and no input files have been 
modified, it will not be run again.
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Tracking Bugs

GNATS is a bug tracking system available from the Free Software 
Foundation. GNATS has a simple Motif-based graphical-user interface 
and has the necessary features to implement a useful system for the 
tracking of bugs. The features include:

n Querying and editing existing problem reports

n Organizing problem reports into a database and notifying responsible 
parties of suspected bugs

n Allowing support personnel and their managers to edit, query and 
report on accumulated bugs

n Providing a reliable archive of problems with a given program and a 
history of the life of the program by preserving its reported problems 
and their subsequent solutions.

Although the system is customizable, there are four built-in problem states

n Open - the initial state of every PR; this means the PR has been filed 
and the person or group responsible for it has been notified of the 
suspected problem

n Analyzed - the problem has been examined and work toward a solution 
has begun 

n Feedback - a solution has been found and tested at the support site, and 
sent to the party who reported the problem; that party is testing the 
solution

n Closed - the solution has been confirmed by the party which reported it
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Using the Design Environment

In order to use the design environment described in this chapter, each 
designer has to create a local work tree. The designer also needs to set the 
following environment variables:

setenv RCS_TREE /usr1/<project_name>_RCS
setenv RELEASE_TREE /usr1/<project_name>_RELEASE
setenv WORK_TREE /usr1/<user_name>/<work_area>

A typical working model for designers is to have two windows open, one 
in the local /src directory and one in the local /work directory. The designer 
checks HDL files out of RCS and modifies them in the local /src directory. 
The designer invokes simulation or synthesis runs from the local /work 
directory. To modify a configuration, the designer changes directory to the 
/etc directory and checks out the appropriate configuration file.

To invoke a simulation, synthesis, or timing run, the designer changes 
directory to the local /work directory and invokes the appropriate perl 
script to create the make file.
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Lab Exercise: Introduction to the Design Environment
Lab Exercise: Introduction to the Design Environment

A recommended design environment is described in An Approach to Top-
Down Design. This lab walks you through the fundamentals of how the 
design environment is set up, where data is created, how data is managed, 
how data is shared, and how tools are invoked.

1. Change directory to dtmf_proj directory. Here you will find the 
following directories:

Directory Use

RCS/ or 
SCCS/

This is the source control directory for the project. All 
files for the project are checked in and out of this 
directory. The labs will use RCS or SCCS (Source 
Code Control System) as the source control tool.

bin/ Location for any executable scripts that are used for 
the project.

docs/ Location of any applicable documentation for the 
project.

etc/ Location of design configurations, simulation 
configurations, synthesis command files, SDF files, 
and waveform restoration files.

include/ Location of files containing auxiliary HDL code such 
as include files, memory data files, or VHDL 
packages.

lib/ Location of the synthesized netlists for each design 
unit.

src/ Location of HDL source files that have been checked 
in to the RCS or SCCS directory and checked out into 
src. These files are verified and can be shared with 
other designers.

work/ This is the user’s work directory. Each designer has a 
separate work area where changes to design data can 
be made without affecting other designers. Within the 
work directory, each designer can optionally create a 
local archive to control design data.
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2. Change directory to the work directory and source the .sourceme 
file.

This file sets up the user’s shell environment for this project. 
Environment variables are set to define the project archive directory 
and the user’s path is set to include the project bin directory.

3. Create the file digit_reg.v or digit_reg.vhd depending on the 
language you are using. 

Code this module given the module description in this DTMF Design 
Description chapter of the Lab Manual.

4. Verify the syntax and synthesizability.

Run synergy and perform a synthesizability check or use the check 
script provided.

verilog : check digit_reg.v
vhdl : check digit_reg.vhd

5. Create an RCS or SCCS history file for the initial version using:

If you’re using SCCS, type

sccs create <filename>

If you’re using RCS, type

ci <filename>

This creates a file called s.<filename> in the SCCS project directory 
and automatically checks out a read-only copy of this file in your 
current directory. 

results/ Location of results from analysis jobs to be saved; 
synthesis reports, simulation log files, waveform 
databases, scan chain files, timing analysis reports, etc.

Directory Use
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6. Verify the functionality of the module by creating a test case 
(digit_reg_test.v or digit_reg_test.vhd).

To edit a file and make changes use:

If you’re using SCCS, type

sccs edit <filename>

If you’re using RCS, type

co -l <filename>

This makes the file writeable and allows you to edit it with a text editor. 
To update the history file use the command(s):

If you’re using SCCS, type

sccs delget <filename>
sccs deledit <filename>

If you’re using RCS, type

ci <filename>
ci -l <filename>

This checks in the changes and checks out a read-only or a writeable 
copy of the file.

7. When the functionality is correct and the block is synthesizable, 
check the file in, using sccs delget, or ci.

sccs delget <filename>

8. Check the latest version out into the project source code area.

If you’re using SCCS, type

cd ../src
sccs get <filename>

If you’re using RCS, type

co <filename>

9. Synthesize the digit_reg using the constraints provided in the etc/
digit_reg.cst file. You can use the syn script provided.

verilog : syn digit_reg.v
vhdl : syn digit_reg.vhd
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10. When synthesis has finished, install the synthesized netlist in the 
work/lib directory : 

cp synruns/digit_reg.run/syn.v lib/digit_reg.vs

Note the Verilog netlist is the data we will move forward to sign-off 
with for both Verilog and VHDL users.

Turn in the following:

digit_reg.v or digit_reg.vhd

digit_reg_test.v or digit_reg_test.vhd

digit_reg.chains
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Design Capture: The Challenge

Factors that make design capture a challenge today include

n Design complexity

Two decades ago, designers modeled electronic circuits at the 
transistor level. When semiconductor technologies advanced and 
design complexity increased, designers transitioned to a new level of 
design abstraction—gate-level—to handle the increase in complexity. 

A decade later, when technologies again advanced and design 
complexity again increased, designers turned to hardware description 
languages (HDLs) in order to reduce the complexity of the design to a 
scale that the human mind can grasp.

Increasing the level of design abstraction is one way to meet the 
challenge of increasingly dense, complex designs. Today’s 
technologies require an additional level of abstraction—system-level 
design. System-level design techniques help the designer deal with the 
problem of complexity. They also allow new opportunities to 
experiment, explore, optimize, and verify before implementation.

n More logic on the die

As design complexity increases, designers try to fit more and more 
logic on the the die which creates a prodcutivity gap in specifying and 
verifying the functionality.

n Intellectual Property (IP) 

To meet time-to-market pressures, design groups are increasingly 
outsourcing the design of their components to other companies. A 
critical concern to those companies is the protection of their IP. 
Companies want to be able to hide the implementation details of cells 
while providing the models designers need to verify the functionality 
and timing of the overall system.

n Design reuse

Design teams can use design capture methods such as using 
parameterized models that promote the reuse of components. 
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The Goals of Design Capture

In the top-down design approach, designers create models at increasingly 
lower levels of abstraction during the design process. The designers 
typically begin by creating system models, which are at the highest level 
of abstraction. When the design concept or system intent has been 
validated, the designers create implementation models represented as HDL 
models for portions of the design at the next lower level of abstraction.

HDL models can themselves be written in varying levels of 
abstraction—behavioral, functional, and structural. The levels generally 
represent nonsynthesizable, synthesizable, and gate level, respectively.

Designers use a behavioral model when they are modeling a block they 
will implement using a method other than synthesis. Designers also use 
behavioral models as stub models to aid in functional verification. 

Beneath the behavioral level is the RTL, or functional level. RTL models 
are written using modeling styles to ensure that they are synchronous so 
that they can be implemented by synthesis tools. 

Sometimes the best method for a portion of a design is to directly 
instantiate existing cells. This level of abstraction is the gate level. The 
models at this level are usually created automatically by synthesis tools or 
data path generators. Designers may still choose to create these gate-level 
implementation models by hand, using a schematic generator.

In the last phase of the design process, the gate-level implementation 
models are integrated to form a system component model. When this 
model has been verified, then the design is ready for hardware prototyping.

The scope of the models, as well as the abstraction level, changes during 
the design process. The system models have the broadest scope. Some of 
those system models may model key aspects of the entire system as a 
single unit; others may partition the system into subsystems. In the 
implementation models, both RTL and gate-level, the subsystems are 
further decomposed into smaller subblocks.

Figure 3-1 shows the partitioning and integration of design models through 
the design process in relation to the types of models.
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Figure 3-1 Partitioning and Integration of Design Models

Model Development 
Planning

Model development commences with high-level systems design. During 
high-level systems design, the system architect determines what models 
will are developed based on the required amount of detail necessary to im-
plement and verify system function and performance. This information is 
captured in a model development plan which defines the models and their 
types. There are two major process steps which drives model development 
in systems design.

n System decomposition 

n Functional unit partitioning
System decomposition determines the high-level system resources includ-
ing processors, busses, and memories. Functional unit partitioning refers 
to the allocation of the system functions into one or more ICs where now 
physical boundaries are considered fully.  Factors which often influence 
functional unit partitioning include the major system dataflow and busses, 
clock domains, all software controlled registers, memories architectures, 
processing units and associated datapaths, package pin count, package size 
and power trade-offs. Functional unit partitioning often results in refining 
the architecture further in what is commonly referred to as microarchitec-
tural optimization. From this partitioning, functional unit interfaces includ-

System Models

Implementation Models

System Component Models
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ing data formats and encoding are decided.

As system architects and ASIC designers gain a better understanding of the 
general partitioning from refining the system level specifications out, more 
detailed model development is specification to the model development 
plan. Several different model types will be developed through the product 
development. A brief comparison of model types is shown in Figure 3-2. 

Figure 2-2 Comparison of Model Types

This chapter will review the various model types utilized in ASIC-based 
systems design.

System Models The goals of system models are to

n Capture the key performance issues in the design so that the system 
performance can be measured

It is important to know whether the system being designed has the 
capacity to handle the expected work load.

n Capture the key system algorithms

System - Behavioral System - Performance Implementation

Purpose verification performance analysis design implementation

Structure arbitrary tracks architecture tracks implementation

Language full HDL PLI, C synthesis style

Datatypes complex types tokens, queues bit, vector, integer

Speed 10-100X 
implementation

100-10000X 
implementation

10X structural

Effort 4 weeks to 6 months 4 weeks to 6 months 9-12 months

Timing asynchronous, zero 
time, or cycle true

mean system 
throughput

cycle true

Accuracy passes 90%+ ASIC 
tests and 100% 
subsystem tests

N/A passes 100% ASIC
and 100% subsystem 
tests
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Creating a behavioral model of the entire system allows the 
opportunity to create new algorithms, optimize known algorithms for 
a new context, or select the best of several known algorithms. 

n Define and optimize the system architecture, partitioning, and 
packaging

The high-level system design phase is the time to evaluate alternatives 
in the size and performance of various subsystems and in the 
partitioning of functionality and algorithms between hardware and 
software or between on-chip and off-chip. It is also the right time to 
select the appropriate packaging. Trade-offs made at this point in the 
design process far surpass the effects of downstream optimization.

n Clarify system requirements

Creating a system model can bring to light system requirements that 
are not feasible, not well-defined, or not well-understood by all 
members of the team. Once the model is complete and signed off, it 
becomes the executable system specification.

Behavioral HDL 
Models

At the behavioral HDL level of abstraction, the goals of design capture are 
to 

n Isolate portions of the design for later implementation

Designers create behavioral HDL models as black boxes that will pass 
through synthesis unchanged. For example, they might use behavioral 
models for embedded blocks of RAM or ROM to be implemented by 
a module generator. Or they might model data paths as behavioral 
models to be implemented by a data path compiler.

n Create stub models for verification

Designers also use behavioral models as stub models, or placeholders 
for components that have not yet been implemented, to aid in 
functional verification. In this case, the designer also writes a 
functional Register Transfer Level (RTL) design for synthesis.

Create hybrid models 

Designers create a hybrid model with both behavior and analytical 
models. These models system context as analytic model. They are 
useful when system context processing rate is much slower than model 
under test. An analytic model of a sub-system provides a probabilistic 
distribution function and queuing model that models the system’s 
processing response rates based on high-level system parameters.
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RTL Implementation 
Models

During the block-level implementation phase, the goals of design capture 
are to

n Create a synthesizable design

Synthesis tools require designs modeled at the Register Transfer Level 
(RTL) of abstraction. These models are less abstract than the system 
models in that they have to model not just the algorithm, but also the 
behavior of an electronic circuit at each clock cycle.

Synthesis tools typically require an HDL description as input, and the 
description has to follow a synthesis modeling style for the tool to 
recognize the behavior that is being modeled.

n Design at a high level of abstraction to increase the range of possible 
implementations

Synthesis tools can implement gate-level HDL descriptions as well as 
RTL. However, to fully benefit from the flexibility that synthesis tools 
provide, it is better to model the design at the highest level of 
abstraction possible—at the finite state machine level, for example, not 
at the flip-flop level.

n Partition the block properly

Synthesis tools perform best on design chunks of 5000 gates or less, so 
large subsystems have to be further partitioned. Some issues to be 
taken in consideration when partitioning include

q Clock domains

q Data path and control logic

q DFT requirements

n Reuse previously designed, optimized cores

The block-level design should make as much use as possible of 
previously designed and optimized cores. This approach reduces 
design development time and increases the confidence in the quality of 
the end product.

Structural Models At the structural level of abstraction, the design capture goals are to create 
design modules that are either non-synthesizable or lend themselves to 
hand instantiation. Typical modules that are captured at the structural level 
are:

n Test structures

n Tri-state bus drivers
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n Asynchronous logic

n I/O pads
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System Models

System models can be divided into the following categories:

n System specifications

System specifications play an important role in the definition of system 
requirements. 

n Analytic models

These models analyze the performance of the system.

n Behavioral models

These models explore different algorithms and partitioning for system 
control and processing.

n Hybrid models

These models combine performance modeling and algorithm 
development in one set of models.

n Block diagrams

These diagrams are a graphical representation of the partitioning of the 
system.

System 
Specifications

The system-level engineering specification documents the system 
requirements. This specification is not only a document that can be 
reviewed, but also includes an executable system model that can be used 
to verify functionality of the system-level HDL simulation.

An additional specification is created for each subsystem. Like the system 
specification, it is reviewed and agreed upon by all the team members. 
When properly done, it acts as form of interface contract between the 
parties involved in the design project. Below is an outline of a 
specification.

Functionality This section is an overview of the operations of the system or subsystem. 
It gives a general outline of each of the major logic blocks and busses of 
the ASIC. 
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Performance This section gives expected performance of the system or subsystem, 
usually expressed in terms of latency through the device, throughput, or 
operations/second. It is very important to establish the performance targets 
so that the designers have specific goals and know what to optimize for. If 
necessary, the designer can always re-negotiate these performance values 
should the design not meet them. 

Gate count Overall gate count is estimated here. 

Power Overall power dissipation is also estimated here, according to the target 
vendors specs.

Block Functionality These sections describe the functions of each block in the design. The I/O 
of each block is described. Timing diagrams show cycle accurate 
waveforms for every block I/O. A target gate count is given. The block 
performance expectations are described.

Macro Blocks Macro blocks are the predesigned blocks that will be implemented in this 
system or subsystem. The design documentation locations for these blocks 
are noted. 

Test This section describes the scan methodology that will be implemented in 
the design. IEEE 1149 compliance could be noted. The target test coverage 
is given.

This section also covers the functional vector tests that will be used to test 
the device. Expected test coverage may be detailed as well as the test 
speed.

Vendor Process This section covers the targeted vendor process. Vendor libraries are 
noted, including the specific temperature, voltage, process and wire load 
models.

Custom Cells This section covers any custom vendor cells required. A detailed 
specification for each of the cells needs to accompany each cell. The 
specification is to be agreed upon by both vendor and purchaser.

Clocking This section details the clocking mechanism to be implemented. This 
includes: minimum clock rate (max. frequency), maximum clock rate, 
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internal clock skew, off-chip clock skew, and scan clock rate. Minimum 
and maximum clock duty cycles are noted.

Package The package type is noted here. The package pin out layout, minimum and 
maximum die size, and package dimensions should be noted if available.

Operating voltages The operating voltages include tolerances are included here.

Operating currents The operating current ranges are included here.

Thermal The thermal characteristics of the package, heat-sink (if applicable), 
cooling mechanism, maximum and minimum ambient temperatures, Theta 
JC, Theta JA, and elevation are provided so that minimum and maximum 
device temperatures can be calculated. 

Analytic Models The objective of analytic models is to verify that the system has enough 
capacity to handle the expected work load. In most complex systems, there 
is a contention for system resources. For example, in a computer system 
there may be bus contention, where multiple devices access common 
memory devices across a common bus. In a networking system, many 
systems may need to transmit and receive data through a common switch. 
If the system resource—the bus or the switch—does not have enough 
capacity, then a queue of work—jobs or data packets—begins to form, and 
system throughput (total jobs completed divided by the total time) 
degrades from the peak performance. Analytic models define the system in 
terms of servers (system resources) and queues. Analytic models can be 
represented graphically as shown in Figure 3-3.
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Figure 3-3 Analytic Network Queuing Diagram

Each resource in the system is assigned a service time that represents the 
rate at which work is accomplished. The service time can be constant for a 
particular resource or described with a probability distribution function 
based on a mean service time. Figure 3-4 shows the probability distribution 
functions commonly used to describe service times.

Figure 3-4 Probability Distribution Functions

External inputs to the system are assigned an interarrival work rate that 
describes the rate of incoming data to the system. These arrival events can 
also generate other events with different interarrival rates, as the workload 
flows through the system.

The system model also needs to define how the system handles contention. 
If a resource is busy when a new event arrives, the resource can process the 
new event as a priority interrupt or flag this event for a retry. This system 
behavior is entirely controlled by the system control and protocol. 

queue

server=

=

Function Parameters

Exponential Mean service time

Erlang Mean service time with standard deviation

Hyper-exponential Minimum service time

Uniform Upper and lower service time limits

Random Upper and lower limits

Normal Mean service time
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Different system protocols together with exception and interrupt handling 
can determine system throughput just as much as resource service times.

The analytic network queuing model for a single system resource (for 
example, one of the servers and queues shown in Figure 3-3) describes two 
events, the arrival of a task request and the completion of a task. The arrival 
event 

n Increments the queue

n Calls a function to generate the next request arrival time

n Calls another function to generate the task completion time. 

The completion event decrements the queue and, if the queue is not empty, 
calls another function to generate the task completion time.

Figure 3-5 shows pseudo-code for an executable model of a single system 
resource.

Figure 3-5 Executable Model of a Single Server Queue

The functions used to generate the arrival time and completion time need 
to reflect the anticipated work load for the system and the anticipated time 
it takes to complete the task. The more accurate these functions are, the 
more accurate the performance statistics will be.

while current_time is less than end_of_simulation_time

if arrival_time is less than completion_time

set current_time to arrival_time

increment queue

generate next arrival_time 

if queue = 1, generate completion_time

else

set current_time to completion_time

decrement queue

if queue > 0, generate completion_time

else set completion_time to end_of_simulation_time
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Behavioral System 
Models

Designers use behavioral models to capture the key algorithms in a system. 
In a communications system, for example, the designers may want to test 
out several different communications protocols. In a graphics system, the 
designers would want to focus on the algorithm for building a graphical 
image from data. The protocol involves a sequence of data and control 
transactions executed in hardware and software. 

Behavioral models are functionally accurate, but timing-independent. 
While behavioral models should accurately model the functionality of the 
design, they do not model the distribution of events over clock cycles. For 
example, in the Verilog code shown in Figure 3-6, a series of three events 
occurs when the multiply signal is asserted. The model does not describe 
these events in relation to a clock signal; instead, the model relies on the 
simulator to sequence events so that operandB is shifted before it is 
multiplied by operandA.

Figure 3-6 Sample Behavioral Model

The term behavioral is also often applied to RTL models as well; for the 
purposes of this document, we will consider them to be two distinct levels 
of abstraction.

always @(multiply)

begin

temp1 = operandA[7:0];

temp2 = operandB << 1;

result = temp1 * temp2;

end
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RTL Implementation Models

Once the system models are complete and system-level verification has 
begun, the designers can start to create RTL implementation models for the 
subsystems in the design. The designers use synthesis and/or datapath 
generators to generate the gate-level implementation models from the RTL 
models.

To make the most advantage of the synthesis tools, the RTL models should 
follow the synthesis modeling style and should use hierarchy. The 
following sections discuss these topics in more detail.

Synthesis Modeling 
Style

Synthesis tools cannot implement behavioral models because they are 
timing-independent. For a design to be synthesizable, it must model the 
behavior of the circuit at each clock cycle.

For example, in a behavioral description, a memory read operation might 
be represented in Verilog HDL as

data <= membus;

On the other hand, the RTL description for the same operation has to be 
more detailed. It should describe the control signals and define the clock 
cycle boundaries as shown in Figure 3-7.

Figure 3-7 Sample RTL Model

On the other hand, the models intended as input for synthesis tools should 
not be modeled at too low a level. Synthesis tools can implement gate-level 
HDL descriptions as well as RTL. However, to fully benefit from the 
flexibility that synthesis tools provide, it is better to model the design at the 
highest level of abstraction possible.

always @(posedge clk) 
if (mem_op) 

if (read_not_write) 
begin 

rd <= 1’b1; 
@(posedge clk) 
data <= membus; 
rd <= 1’b0; 
end 

Clock edge indicates 
clock cycle boundary.

Control signals
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For example, it is possible to model a carry-look-ahead adder at the 
equation level:

assign 
gen = a & b, 
prop = a | b,

gg0    = (             gen[1]) | 
( prop[  1] & gen[0]),

gg1    = (             gen[3]) | 
( prop[  3] & gen[2]),

c1 = gen[0] | 
(prop[   0] & c_in),

c2 = gg0 | 
(&prop[1:0] & c_in),

c3 = gen[2] | 
( prop[  2] & gg0)| 
(&prop[2:0] & c_in), 

c4 = (             gg1) | 
(&prop[3:2] & gg0) | 
(&prop[3:0] & c_in),

carry = {c4,c3,c2,c1,c_in},

c_out = carry[width],

c_bund = carry[width-1:0],

sum = (prop & ~gen) ^ c_bund;

The synthesis tools treat these equations as Boolean equations, and 
therefore cannot build alternative implementations, such as a carry-save 
adder or ripple-carry adder. A better way to model an addition operations is

assign {c_out, sum} = a + b + c_in

This approach is the most flexible, in that it does not specify an 
implementation. The designer can select a different implementation for 
each synthesis run to determine the most optimum implementation.

Modeling at a high level of abstraction allows the synthesis tools to make 
high-level implementation trade-offs based on user-defined constraints. 
This means that given poor constraints, the outcome may not be a desirable 
one. On the other hand, a properly constrained design yields optimal 
results for the given technology library. 

Modeling at a low level of abstraction produces a more predictable result 
and the constraints have a lesser effect. However, modeling at a low level 
of abstraction is much more time-consuming and typically results in less 
efficient simulation performance. 
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Hierarchical Designs Top-down design implies the creation of design hierarchies from the top 
down. Typically, the design block is partitioned and each of the subblocks 
are further broken down until a set of lower-level modules and their 
interconnects have been defined. 

One reason for partitioning the design is that synthesis tools perform best 
on design chunks of 5000 gates or less. However, there are other reasons 
for using hierarchy in a design:

n Clock domains

Synthesis tools can handle multiple clocks, as long as the clocks have 
the same period. If the design has clocks with different periods, then 
the design needs to be partitioned by clock domain so that the logic in 
the different domains can be synthesized and optimized separately.

n DFT requirements

If parts of the design use different types of storage devices 
(edge-sensitive or level-sensitive) or different clocking schemes 
(single-phase or two-phase clocks), then the design needs to be 
partitioned so that the test logic insertion can be performed properly on 
the different parts of the design. 

n Datapath vs. control logic

Separating the datapath logic from the control logic facilitates the 
sharing of resources for complex operations and the use of datapath 
generators.

n Resource sharing

As much as possible, the design should be partitioned so that shared 
logic is not duplicated in separate parts of the design, as shown in 
Figure 3-8 on page 4-17. 

n Critical path optimization

Design partitioning should accommodate critical path consolidation 
and isolation. When possible, inputs and outputs should be registered. 
This helps in defining timing budgets and creating input arrival and 
output required times.

For example, in Figure 3-9 on page 4-17 the output required times for 
module A and input arrival times for module B are effectively 0. 
Likewise, the output required times for module C and the input arrival 
time for module D are effectively the clock period (less the setup time). 

Also, design partitioning should not create critical paths that span 
multiple preserved modules, as shown in Figure 3-10 on page 4-18.
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Figure 3-8 Resource Sharing

Figure 3-9 Design Partitioning
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Figure 3-10 Critical Path Optimization

Structural Models Below is an example of a structural model of a NAND tree for process 
validation testing.

Figure 3-11 Structural NAND Tree Model

Inhibits critical path optimization

Allows critical path optimization

module nandtree (nandin, nanout); 
input nandin; 
output nandout;

nand2 i0(nandio, nandin); 
nand2 i1 (nandi1, nandio); 

. 

. 

. 
nand2 i800 (nandout, nand799);

endmodule
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Datapath Design Previously, with system level designs, the datapath portion was generally 
confined to a dedicated, high performance chip function (DSP, uP, e.g). 
The nature of these highly computational functions generally dictated a 
full custom design methodology. Since these typically separate, highly 
data computational chips were designed in a separate environment from 
the ASIC portions of the system, many iterations on the ASIC or IP portion 
of the system design could occur fairly independently of the custom 
datapath portions. Thus, the datapath IC design may or may not have been 
the “bottle-neck” for scheduling the finished system-level design. 
However, as we can see now with the physical possibilities opening up to 
allow for system-level integration on a chip, datapaths are becoming 
common requirement of many more types of IC applications. With the 
continuing trend of designing higher performance, compute-intensive 
chips, as well as the increased level of system -integration on a chip; the 
appearance of datapaths in chip design is becoming more and more 
common. 

The most effective method of maximizing a datapath’s performance is to 
effectively manage where and when the appropriate datapath-functions are 
executed. It is at the architectural level that the designer has the most 
versatility and control over the performance of the design. Examples of 
theses architectural decisions might be determining the number of 
pipelines necessary to meet the performance specifications or whether a 
datapath function should actually be split into multiple datapaths in order 
to meet the performance specifications. Unfortunately, with custom 
datapath design, the distribution of the designer’s time spent on 
architectural partitioning and actual IC design versus the physical design 
implementation - which is the least leveragable phase - is quite 
disproportionate. Of the total design cycle from concept to layout, a typical 
time-allotment per design-phase is 10 per-cent for architecture; 10 per-cent 
for IC design and 80 percent for physical layout and verification.

The reasons behind this disproportion vary; but the perception that the 
forging ahead with the design implementation before verifying its 
feasibility will still yield usable results is a common one. Historically, the 
designer has been forced into this scenario due to insufficient analysis tools 
at the architectural level. “Fixes” during the physical design phases were 
common and could still offer controllability over the end-results. 
However, with the fabrication processes in the DSM range, the effects of 
altering a physical design are no longer intuitive as what was once 
second-order-effects are now dominant effects. For example creating 
another datapath region to process some data in parallel may turn out to be 
in appropriate due to the global inter-connect delays - which in larger 
processes would have been negligible. With back-end, pitfalls such as 
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these, front-end architectural tools which can accurately predict these 
physical effects are crucial to producing a design which will converge to 
its specifications.
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Design Capture Technologies

Design capture technologies can be divided into the following categories:

n Programming languages

q C or Perl

For system models, where the main goal is to verify the 
performance and the algorithms, the Perl and C programming 
languages are the modeling language of choice. Designs modeled 
in C or Perl execute faster than those modeled in HDLs, and thus 
facilitate design experimentation. 

q HDLs

For RTL implementation models, where the goal is to model the 
behavior of an electronic circuit at every clock cycle, a more 
specialized programming language is required—a Hardware 
Description Language (HDL). Verilog and VLSI Hardware 
Description Language (VHDL) are comparable in modeling 
power, although VHDL is the U.S. government standard.

n High-level design tools

q Block diagram editors

These are graphic editors that allow designers to visualize the 
overall architecture of the system or subsystem. The designer can 
attach functional or algorithmic descriptions to the subsystems or 
subblocks in the block diagram.

q Language-sensitive editors

These text editors are specially developed to aid in creating models 
using a particular programming language. The editor 
“understands” the correct syntax and semantics of the language, 
and can prompt or highlight errors for the designer.

q Visualization tools

High-level, application-specific visualization tools are becoming 
indispensable in analyzing designs.

q HDL generator

An HDL generator is a tool that can generate an HDL description 
from a system-level model.
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n Libraries

q Application-specific libraries

These libraries facilitate high-level system design similar to the 
way that gate-level libraries facilitate block-level implementation. 
High-level systems design libraries are by nature 
application-specific. A useful library for a designer creating a 
system model of a network communications system, for example, 
would probably contain parameterized models that facilitate 
building token ring or ethernet LANs.

q Macro libraries 

These libraries are used with synthesis tools to facilitate the 
implementation of datapath logic using datapath generators.
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Design for Test: the Challenge

Because of the increasing complexity and density of today’s designs, the 
number of logic gates in VLSI components is increasing at a much faster 
rate than the number of I/O pins on the device. This trend is shown in 
Figure 4-1 as the gate-to-pin ratio, which has increased significantly over 
the past two decades. This high gate-to-pin ratio makes the device’s logic 
less accessible (less controllable and less observable) to the test engineer, 
thereby creating a formidable test challenge. 

Figure 4-1 Increasing Gate-to-Pin Ratios

There are similar test issues at the board and system level. Complex device 
packaging, such as Surface Mount Technology (SMT) and Ball Grid Array 
(BGA), along with growing acceptance of multi-chip module (MCM) 
technology, has resulted in a higher density of board-level interconnects. 
Physical access to board interconnects for probing is either difficult or 
non-existent, making the traditional bed-of-nails board test not feasible. 

These challenges have created a need for Design For Testability, or DFT, 
methodology. DFT is the discipline of modifying, or enhancing, the logical 
design of a chip or system in order to facilitate testing and debug of the 
design during prototype verification and production manufacturing phases 
of the design cycle.
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Goals of a DFT Methodology

The primary goal for a DFT strategy is to impact the overall business 
objectives of the product by shortening the product time-to-market and 
reducing the overall cost of test. A set of objectives in achieving this goal 
are to

n Facilitate the back-end test process

DFT allows manufacturing tests to be developed much more easily and 
efficiently with fewer resources. Proper design for testability can also 
decrease the actual execution time of production tests, which in turn 
reduces the labor costs associated with manufacturing the product.

n Improve the quality of the manufacturing tests

DFT techniques, such as delay testing and Iddq tests extend fault 
coverage beyond the traditional stuck-at fault model. DFT logic 
verification and test vector verification also help make 
production-ready tests available earlier on in the manufacturing cycle.

n Facilitate the front-end design process and the development of related 
products

Investing time up-front in the design cycle to develop a thorough DFT 
strategy can save time during the early phases of development as well 
as during prototype testing and manufacturing. DFT has proven useful 
during design verification by providing access to chip and system 
states via scan paths. This access would otherwise be unavailable to the 
designer.

A good DFT strategy also facilitates the production of related products. 
The time spent in developing a DFT strategy for the initial product can 
be saved when it is used to develop and test similar products.

n Improve testability at all levels of integration

A good DFT strategy addresses testing at all levels, including 
component, board and system levels.

In order to define a DFT strategy that meets these goals, the test engineer 
needs to have a thorough understanding of the techniques available and a 
set of guidelines for choosing the appropriate techniques for a particular 
project. The following sections briefly describe a set of structured DFT 
techniques and a general set of DFT guidelines. 
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Structured DFT Techniques

There are various structured DFT techniques that can be used in support of 
test for sub-micron designs. Because these techniques are designed for 
particular types of components or logic, it is best to develop a block-based 
approach to DFT, where different test techniques are selected for different 
blocks. The standard test techniques for digital logic include

n Internal scan

This technique is appropriate for blocks of sequential logic, where the 
system flip-flops or latches can be used in a test mode.

n Boundary scan

This technique implements scan testing at the board or system level by 
adding scan registers and other test logic at each I/O pin of each 
component.

n Test access collar 

This technique improves the testability of embedded blocks of logic, 
particularly blocks that have been fully laid out.

n Built-in self-test (BIST)

This technique includes a device for generating test patterns and 
another for reducing the results to a single no/nogo signature. This 
technique is appropriate for large memory structures, where scan is not 
practical.

The design for test techniques discussed so far are generally targeted at 
detection of stuck-at faults. The stuck-at fault model is intended to abstract 
the effect of physical manufacturing defects that cause a node of the circuit 
to be shorted to (or stuck-at) a logic 1 or a logic 0. 

Though this fault model is generally well excepted in the industry, and 
studies have show it to be effective in modeling a majority of IC 
manufacturing defects, research has also shown that coverage of faults in 
addition to stuck-at faults will result in a higher quality test. Some common 
IC manufacturing defects, such as bridging faults, gate-oxide holes/shorts, 
defects that cause degraded voltages, and defects that cause timing 
inaccuracies are not generally detected with tests targeted at stuck-at fault 
detection. 
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The following test methods provide test capabilities beyond stuck-at fault 
detection:

n Iddq testing

This technique is based on measuring the power supply current when 
the circuit is in a static, or quiescent state. This technique is useful in 
extremely dense circuits.

n Delay testing

Certain manufacturing defects can cause faults that are only observable 
when the circuit is test at speed. This technique is useful in circuits 
where timing is critical.

The RAM BIST approach, which usually models stuck-at faults, can 
provide at-speed testing of the RAM block, if it is implemented using 
the system clock instead of a test clock. 

Figure 4-2 illustrates a block-based approach to providing DFT. The DFT 
techniques listed above are described in more detail in the following 
sections.

Figure 4-2 Device Level DFT Techniques

Boundary Scan Register

Boundary Scan Register

B
ou

nd
ar

y 
S

ca
n 

R
eg

is
te

r

B
ou

nd
ar

y 
S

ca
n 

R
eg

is
te

r
Scan Register

Logic

IEEE
1149.1

TAP

Fully Scannable Block Test Access Collar

Block 

Analog

ADFT

RAM

BIST

Embedded
4-4 A Top-Down Approach To IC Design v1.2



Design for Test Methodology
Internal Scan To implement internal scan, all the flip-flops or latches of the design are 
connected to form a scan chain or scan path. A multiplexor is added at the 
input to each storage device so that a test mode control signal can select 
either the system data or the scan data as input.

The scan chain thus operates as a shift register when the test mode signal 
is asserted. Test data can be readily shifted or scanned into and out of the 
scan chain. The basic scan path technique known as multiplexed D 
flip-flop (DFF) is shown in Figure 4-3 below.

Figure 4-3 Multiplexed DFF Internal Scan

Internal scan allows full access to the register elements in the block or chip 
under test. The net effect of implementing full internal scan is to reduce the 
task of testing a complex sequential circuit to the problem of testing a large 
combinational circuit. This technique results in an easily solvable test 
problem for Automatic Test Pattern Generator (ATPG) tools and 
dramatically reduces the test vector development time in the design cycle.

Boundary Scan Boundary scan is an extension of the internal scan path approach, intended 
to support board-level and system-level interconnect testing.

Figure 4-4 shows how the IEEE 1149.1 boundary scan architecture is 
implemented in a subsystem. The IEEE 1149.1 standard, an outgrowth of 
the work done by the Joint Test Action Group, JTAG, defines a mandatory 
architecture for controlling access to the boundary scan features in an IC 
component. 
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Figure 4-4 Device Level 1149.1 Architecture

The IEEE 1149.1 standard boundary scan includes the following 
mandatory elements:

n A dedicated scan register at each I/O pin site in order to control and 
observe logic values directly at the component pins

n A bypass register 

n A TAP controller

The TAP controller is a 16-state finite state machine, whose states and 
state transitions are defined by the 1149.1 standard. 

n A four-pin Test Access Port (TAP), including

q The scan input and output pins, TDI and TDO, for serial access to 
scan registers connected through the TAP controller. 

q The test clock, TCK, clocks the TAP controller.

q The test mode select signal, TMS, controls the state transitions of 
the TAP controller.

q An optional TAP reset signal, TRST, may be used to 
asynchronously reset the TAP controller. 

These TAP pins are dedicated for implementing the TAP protocol and 
may not be shared by the system functions of the device. 
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Certain behavioral characteristics of these elements are also required by 
the standard, such as the TAP protocol and the test behavior of the 
boundary scan register.

Also shown in Figure 4-4 is the standard’s provision for optional test data 
registers (User Test Data Register), which can be the internal scan 
register(s) of the subsystem. The IEEE publication Standard Test Access 
Port and Boundary Scan Architecture, 1149.1a-1993 has further details on 
the 1149.1 standard.

Figure 4-5 shows how boundary scan is implemented at the board-level. 
Studies have shown that, for surface mount boards, 76% to 95% of 
manufacturing faults are caused by solder opens or shorts. Of course, to 
maximize the benefits of boundary scan, it must be optimally designed into 
the product. 

Figure 4-5 Board-Level 1149.1 Architecture
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There are several factors that determine the required amount of boundary 
scan designed into a product: 

n Test equipment and test development costs

n Test execution time

n Fault isolation requirements 

n Lack of physical access

The last two reasons are the most compelling reasons for boundary scan. 
In any case, if boundary scan is implemented in a product it is essential that 
planning be done at the system level because it primarily benefits system 
test. Since most systems do not contain 100% boundary scan IC’s due to 
availability or cost, intelligent planning can make use of partial boundary 
scan to test or assist in testing significant portions of non-boundary scan 
logic. [Wayne Daniel, Integrated System Design, September 1995]

Test Access Collar Embedded blocks are blocks of the design that have been implemented in 
the form of a macro or megacell, such as a CPU core or a standard bus 
interface, for example, a PCI bus macro. These embedded blocks often 
create a test problem either because they are large and complex, or because 
designers do not have access to the source description for the block if the 
block has been imported into the design as a purely physical block. 

It is difficult to control the testability of an embedded block, and it may be 
impossible to generate high quality tests for the block using ATPG tools. 
For embedded blocks, it is better to have an existing set of test patterns of 
known high quality and to test the blocks in a stand-alone fashion.

Figure 4-6 shows an embedded block and a method for providing 
testability around the block. This method enables test patterns to be applied 
separately either to the core, or to the remaining chip logic. 
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Figure 4-6 Embedded Block with Multiplexed I/O

In this example, there is a test mode that multiplexes the normal interface 
signals of the embedded core out to the chips’ I/O pins in order to provide 
direct access to the core block for test. A bypass path around the embedded 
block is also provided for testing the remaining chip logic independent of 
the core block. An alternative method is to implement a boundary scan 
collar around the embedded block. This would then provide the necessary 
access and isolation of the core block from the rest of the chip for test 
purposes.

Built-In Self Test for 
RAMs

Memory structures larger than register files or FIFOs are usually 
implemented as a RAM array or a latch-based structure. In this case, 
internal scan is far too costly; a more viable solution is a Built-In Self-Test 
(BIST).

Figure 4-7 shows as an example an embedded RAM block and the BIST 
logic added to test it using a pseudorandom pattern algorithm. The RAM 
BIST implementation requires that multiplexors be added to the inputs and 
the outputs of the RAM and that dedicated BIST registers be connected 
through the multiplexors. 

The data and address inputs use Linear Feedback Shift Registers (LFSRs) 
for pseudorandom pattern generation, and the RAM data output uses a 
Multiple Input Signature Register (MISR) to compact the results of the 
RAM BIST responses into a go/nogo signature. The BIST register-mux 
structures are shown as separate structures but may actually be 
implemented with the functional system registers.
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Figure 4-7 RAM Array with BIST

In addition to supporting test of the RAM itself, this RAM BIST approach 
also provides for the reuse of the BIST registers as added observability and 
controllability point at the inputs and outputs of the RAM block. At the 
input an observe path is added, shown as the connection from the output of 
the mux to the input of the LFSR. At the output a control point is added, 
shown as the connection from the MISR to the input of the mux. These 
features provide enhanced ATPG testability of the core logic surrounding 
the embedded RAM. The result is a self-contained and autonomously 
testable memory.

Also, BIST results in a methodology that can be easily reused. The use of 
macro libraries further simplifies this process and fosters standardization 
of BIST test methodologies.

For large embedded RAM structures the use of memory BIST has little or 
no impact on the cost. It also minimizes the cost of manufacturing 
production test by reducing the test pattern overhead required to test the 
RAM. Thus, the RAM BIST approach can be justified by its cost savings.

Iddq Testing Iddq testing is a test method based on measuring the power supply current, 
Iddq, drawn by a CMOS integrated circuit in its quiescent, non-switching, 
state. This technique takes advantage of the fact that CMOS technology 
draws very minimal current, typically in the nanoampere range, for a 
defect free circuit in its quiescent state.
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Iddqtesting differs from stuck-at fault testing in that it is a current test, not 
voltage test. Stuck-at tests require that faults be propagated to an I/O pin of 
the device. However, Iddq faults can be observed at the power supply pins 
of the chip. Even in cases where the voltage is still within the range for the 
expected logic level, there is still an abnormal current draw which exceeds 
the normal quiescent Iddq current, and the defect can be detected. 

A single Iddq test vector can detect a large number of faults, and from a 
test-generation perspective, Iddq vectors are quite efficient. However, 
several Iddq test vectors, typically in the tens to hundreds of vectors, are 
still required to achieve high Iddq coverage. One disadvantage of Iddq 
testing is that Iddq test application rates can be very slow, due both to the 
long settling time required for the switching current to settle and to the 
speed of the measurement electronics that are typically used. 

The Iddq technique is also not very useful for fault diagnosis and isolation, 
because it is difficult to determine the specific cause of the failure by 
means of the current measurement, and because so many possible Iddq 
faults are detectable by a single test vector. It is important to note that Iddq 
testing is not intended to replace high quality stuck-at test vectors, but it 
has been widely acknowledged by the test community as one of the most 
cost effective means of improving test quality beyond traditional stuck-at 
fault testing.

Iddq tests are performed as follows:

1. Apply a test vector which puts the circuit into a known static state. 

2. Wait for a short period of time, usually some number of 
milliseconds, for the switching currents to settle out. 

3. Measure the Iddq power supply current. 

In a defective circuit, the measured Iddq current is typically in the 
microampere to milliampere range.

As an example, consider a bridging defect, where the output transistors of 
two logic gates are shorted together. If these two gate outputs are driven to 
opposite logic values after the switching currents have settled out, then the 
Iddq measurement would detect a high current draw, indicating that the 
circuit has a defect.

In order for a subsystem to be Iddq testable, certain design requirements 
must be met. In general, Iddq testing requires that the design be fully static 
and that current-draining states be avoided, since such states draw an Iddq 
current in excess of that expected in the normal quiescent state. 
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To avoid switching currents during Iddq testing, all clocks are stopped 
before the current measurement is taken. A fully static design maintains 
state even when the clocks have stopped. Dynamic logic should be 
avoided, since in the absence of a clock the dynamic nodes lose charge and 
may cause some transistors to partially turn-on, creating a current draw.

The following are a general set of Iddq testability rules and guidelines.

n Disable pullups and pulldowns

Any pullup or pulldown devices in the chip cause current flows when 
they are driven to the opposite state. A common solution is to add an 
Iddq test mode signal at the pullup or pulldown device, so that when the 
test mode is asserted, the device is disabled and a static current 
measurement can be made.

n Avoid floating nodes and degraded voltages

States that cause floating internal busses and logic gates that have 
floating inputs must be avoided. Floating nodes can cause excessive 
current draw. A degraded voltage driving a FET can partially turn-on 
the transistor and cause an excessive current flow.

n Avoid drive contention

There should be no drive contention on internal tristate busses, other 
internal nodes, or between the tester and the I/O pins of the chip. If any 
circuit node is driven to opposite states by different drive sources there 
is an excessive current draw.

n Partitioning of power busses and supply pins

Digital and analog portions of the design should have separate power 
supply pins, so that the digital portion can be tested with Iddq vectors. 
Also, in some very large designs where the process is known to have 
high leakage currents, partitioning the design into several sections with 
separate power busses allows Iddq testing to be done on each of the 
separate partitions independently, where quiescent currents are much 
smaller.

n Disable devices that have static power dissipation

Some circuits, such as embedded RAM structures, will dissipate static 
power in certain states. In this case there should be an Iddq test mode to 
disable any FETs that are always on in normal operation and would 
cause static power dissipation in some states.
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Delay Fault Testing Delay faults, or timing faults that appear when the circuit is run at speed, 
are very difficult to detect, since in many cases both the underlining defect 
and its effect on the behavior of a component can only be seen as a 
parameter being out of compliance with specifications. Delay fault testing 
is used in conjunction with other test techniques, such as BIST or scan.

For example, if a manufacturing defect causes the resistivity of a metal (or 
poly) line to be slightly larger than optimum, it may limit the maximum 
operational frequency of an IC component by increasing certain RC delay 
values. The final result is excessive internal path-delays. 

Such timing faults can only be detected by defining a well-planned signal 
transition at a pre-determined time and observing whether all signals reach 
their final, stable values by that time. Timing accuracy in generating both 
the initial signal transition as well as in observing the final output value is 
of paramount importance. Furthermore, internal delays along the system 
clock distribution tree for a subsystem may contribute to the timing 
problem and must be also considered during timing tests. Thus, both the 
generation of the initial signal transition and the capturing of the 
subsystem’s response to that transition must be achieved using the 
functional clock, so that internal clock-tree delays are accounted for in the 
timing test.

Figure 4-8 shows an example of a delay path test, where the timing path 
from DFF Q3 to Q5 is to be tested and measured. In this approach 
simulation or other analysis is performed to determine the state prior to the 
state where the initial signal transition is generated. Then the component is 
initialized to that state, using scan, for example, and then a system clock 
advances the internal state and generates the desired signal transition. 
Next, a second functional clock pulse is applied after a carefully selected 
time interval to capture the component's response. Results are then 
scanned out to determine pass or failure.

Figure 4-8 Delay Path Testing
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In the example of Figure 4-8, DFF Q3 transitions from a logic 0 to a logic 
1 on the first clock edge of the test, and DFF Q5 captures this transition 
some time later with the second clock edge of the delay path test. The time 
between the two clock edges determines the delay of the path, and by 
varying the separation between the first and second clock edges to 
determine the exact pass/fail point of the path, a direct measure of the delay 
time along the path can be accurately determined.

The difficulty in using this approach is performing the necessary circuit 
analysis to determine the desired prior state. In some scan designs it is 
possibly to utilize the last scan clock edge applied when shifting in the 
delay path test vector to set up the transition before capturing it with a 
functional clock. There are also designs for specialized scan DFFs that can 
load two independent patterns to facilitate delay path testing.
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DFT Rules and Guidelines

There are very few universal DFT rules that apply in all design 
environments. However, several general rules and guidelines have been 
proven to be beneficial in solving and preventing testability problems in 
many complex digital (synchronous) systems. A brief overview of these 
general DFT design rules and guidelines are given below.

n Implement full internal scan

Implementing internal scan provides controllability and observability 
of internal chip states and allows for Automatic Test Pattern 
Generation (ATPG) to easily obtain full test coverage. Payback of this 
approach is greatest when all internal storage elements are scannable.

n Provide for test access around embedded blocks

Since it is not practical to make the states of the embedded block 
scannable, it is necessary to provide for testing of the embedded block 
itself, and to support testing of the logic around it.

n Use IEEE 1149.1 Boundary Scan and its associated Test Access Port 
(TAP)

This allows for board-level interconnect testing using a standard 
protocol and enables commercially available design automation tools 
to be used. Access to all on-chip test functions should be provided 
through the TAP. Using a common interface and protocol to all test 
functions unifies the formatting of various test suites.

n Use dedicated functional clock signal pins

Functional clock signals should not be gated with any other signals and 
must be directly controllable from the component pins. This 
requirement allows a simple and straight-forward mechanism for 
applying a functional clock to the system in order to capture its 
response to a test vector.

n Use dedicated test clock signal pins

Separation of test clocks from normal functional clocks in a 
synchronous system environment means that test actions can be 
performed without affecting the overall system state. For some types 
of internal scan, the system clock is also used to shift the scan register. 
In these cases the test clock and system clock pins may be separate, but 
require multiplexing internal to the chip.
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n Avoid asynchronous logic, combinational loops, and uncontrollable 
latches

Such designs are difficult to initialize to a desired state and keep stable 
in that state while other signals around them might be changing. This 
may prevent proper loading of test vectors into a component or the 
ability to observe the results in an ambiguous manner.

n The drive state of internal tristate busses must be uniquely decoded

Test vectors can potentially cause random assignments to the drive 
state/enables of the bus, so this requirement assures that during testing 
there will be no drive contention on the internal tristate bus.

n A pre-defined reset state must be identified and a straight-forward 
mechanism must be implemented to reset the system

Often, the best solution is to use a dedicated reset pin for this purpose.

n Provide test mode control of the inactive state (no-drive) for 
bidirectional and tristate chip I/O pins

The ability to turn off the I/O drive at certain times during chip and 
board test can help to assure that the chip is not damaged during 
testing. Implementation of the optional IEEE 1149.1 HIGHZ and 
CLAMP instructions is recommended.

n Provide for support and testing of fault coverages in addition to 
stuck-at faults

For example Iddq tests, at-speed or delay tests, and test structures for 
monitoring the IC fabrication process. It has been shown that coverage 
of faults in addition to stuck-at faults can improve the quality of test 
(i.e., reduce the number of test escapes which are passed on to the next 
test step in the manufacturing process).

In most cases, when a particular rule can not be followed, there are 
alternate solutions that still provide the required testability. For example, 
if asynchronous logic must be used, confine its use to the set or reset of 
scannable flip-flops. Then provide for the set/reset to be controllable from 
a primary input or static test mode signal so that the asynchronous logic 
can be disabled for testing. A test mode can also be used in other cases, for 
example to “un-gate” gated clocks or to control latches so that they are kept 
transparent for test purposes.
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Design Verification: the Challenge

Design verification integrates the phases of the design process—high-level 
system design, block-level implementation, and chip integration—by 
verifying that the design continues to comply to all system requirements 
and has been correctly translated from a higher to a lower level of 
abstraction at each phase. 

In today’s product development, the task of verification of large systems 
determines the product development schedule and constitutes the largest 
resource demand on hardware engineers. Given the pervasive need for 
design verification at all phases of the design process, design verification 
methods need to be made highly coordinated in order to eliminate any 
possibility of complex system design errors getting missed. In addition, an 
efficient strategy that reduces the amount of time spent in design 
verification can have a significant effect on the overall project schedule.

Verification can be a time-consuming process. While event-driven 
simulation of RTL and gate-level models is the most common verification 
technology in use in top-down design today, it is also the slowest, as shown 
in Figure 5-1. It can take 100s to 1000s of simulation hours to execute short 
sequences of actual system operation in an RTL model of a system, 
compared to a hardware prototype of the same system which executes at a 
rate of 100 million cycles per second.
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Figure 5-1 Relative Speed of Various Verification Technologies

However, choosing the fastest technology available does not necessarily 
result in shorter design cycles. As shown in Figure 5-1, because the fastest 
technologies—emulators and hardware prototypes—cannot be used until 
after the design has been implemented, complex systems errors that 
surface during emulation or in the hardware prototype are the most costly 
to fix, potentially requiring the team to redesign portions of the system and 
invalidating months of work. While design iterations within a design phase 
such as block-implementation are unavoidable, design iterations that 
require the team to go back to a previous phase may require all other work 
to stop until the redesign is complete and verified.
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Figure 5-1  Design Iterations Impact on Project Schedules

The key to efficient design verification lies in a carefully thought-out 
design strategy, not in technology alone. 
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Design Verification Goals

The challenges posed by design verification cannot be met by technology 
alone. To reduce time spent in verification and to avoid time wasted by 
costly design iterations, a thorough, project-specific verification strategy is 
essential. However, there are two high-level goals that are common to all 
good verification strategies:

n Validate system intent before starting implementation

Analyzing system performance and verifying the algorithms of key 
subsystems or components early in the design process is crucial to 
avoiding back-end design iterations. 

n Verify implementation at both RTL and gate-level

In general, it is better to reduce the amount of time spent simulating the 
entire system design at the lowest level of abstraction. Verifying the 
functionality of the RTL design limits the verification tasks at the gate-
level to removing timing and design rule violations.

It is also better to reduce the amount of time spent in interactive 
simulation. Verifying the functionality of the RTL design also means 
that debugging, which often requires interactive simulation, can be 
completed relatively quickly. Gate-level simulation can be performed 
mostly in batch.

These goals are discussed in the following sections.
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Validating System Intent

The goal for high-level system design verification is to validate the design 
concept —system intent—before design implementation starts. This 
validation involves 

n Analyzing system performance to verify that the design meets all 
performance and cost requirements

n Verifying system functionality to confirm that the algorithms in the 
design meet the system requirements

n Verifying that the packaging and the partitioning of the system into 
hardware and software, ASICs and off-chip, is optimum

It is common for the design verification team to start developing the 
Verification Test Plan (VTP) to validate system intent soon after the 
architecture development starts. The verification test plan will define tests 
which represents the key features and performance factors of the overall 
product. The verification test plan should define

n Architecture Verification Tests (AVTs)

n Performance Verification Tests (PVTs)

All requirements for the verification process are planned inlcuding the 
tests which need to be developed, methods and technologies for verifying, 
the environment and procedures, and the schedule and plan for 
implementing and performing the verification task. Verification strategies 
will be discussed in this chapter.

Analyzing System 
Performance

In most complex systems there is likely to be contention for system 
resources. Bus contention, for example, is a common problem in any 
system where more than one processor accesses common memory banks 
over a common bus. Resource contention also occurs in communications 
systems, where multiple devices transmit and receive data through a 
common switch.

In order to measure system performance it is necessary to determine what 
performance criteria to measure for. These criteria should be consistent 
with the system specifications. Then the design team needs to build an 
analytical model that represents the aspects of the system that need to be 
measured. Using analytic models, designers can generate system statistics, 
including 
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n Throughput—the number of completed tasks/total time

n Server utilization—server busy time/total time

n Average processing time for each request

By linking the analytic models for the whole system together, designers 
can locate and adjust bottlenecks to optimize the flow of data through the 
system.

Tests which test system performance are commonly referred to as 
Performance Verification Tests (PVTs).

Figure 5-1 Analytic Network Queuing Diagram
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Verifying System 
Functionality

Verifying that the key algorithms of the system and its subsystems provide 
the functionality described in the system specifications is the second goal 
of this design phase. In audio, video, or graphic systems, for example, it is 
necessary to test that the algorithm for processing the data has the precision 
necessary to produce the required resolution or quality. In the case of a 
communications system, there may be more than one communications 
protocol available. A test needs to be devised that determines which 
protocol is more appropriate for this system.

In order to refine, create, or simply test the system algorithms, it is 
necessary to create behavioral models of the key subsystems. These 
models, unlike the analytical model, do need to be fully functional 
behavioral models. Unlike implementation models, however, the 
behavioral models do not need to model system status at each clock cycle.

Tests which test system architectural and microarchitectural features are 
commonly referred to as Architecture Verification Tests (AVTs). AVTs 
will be used throughout the development process along with detailed tests 
which verify the logic implementation of the system.

Verifying the 
Partitioning and 
Packaging

The cost, the flexibility, and the performance of a system is determined in 
part by the partitioning of the system into hardware and software. In 
general, implementing system functionality in hardware rather than in 
software results in higher performance and higher cost. Implementing 
functionality in software rather than hardware, however, may provide the 
required flexibility, if the goal is to produce a set of related products with 
a range of features. 

Every system, whether it is a computer system, a graphics system, or a 
telecommunications system, has both control and datapath logic. In a 
system that is data-dominant, where the majority of the system 
functionality is involved in processing data, a number of products of varied 
performance, features, and cost, can be created by partitioning of logic into 
hardware and software. 

Verification of hardware and software partitioning ensures that all the 
required hardware and software resources and their protocols operate 
correctly. Verification of hardware partitioning ensures that all hardware 
datapaths exist across chips, boards, and backplanes. 
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Verifying the Implementation

At this point in the design process, the design has been partitioned into 
blocks, which are either subsystems—ASICs, FPGAs, microprocessors—
or standard components—memory and cores. 

Verifying the implementation of systems can be constrained by human and 
compute resources. Tests which verify system implementation are 
commonly referred to as Implementation Verification Tests (IVTs) and 
must be planned so as to limit the extent on the verification constraints 
while providing high confidence in the system implementation.

The verification needs for subsystems are different from those for standard 
components. Standard components do not require internal verification; it 
is necessary, however, to verify that these parts work within the context of 
the system. In contrast, it is necessary to verify that the subsystems work 
both internally and within the context of the system.

Full timing verification should be postponed until the chip-level 
integration phase of the design process, when all the blocks within a 
subsystem have gate-level models and the most accurate timing 
information is available. The focus of verification at the block-level 
implementation phase should be verifying the functionality of the models. 
For this purpose, cycle-accurate timing is adequate. 

However, for timing-critical blocks in particular, designers can do much 
during block implementation to facilitate the chip-level integration. Using 
estimated parasitics from high-level floorplanning to drive synthesis, 
reoptimizing synthesized blocks to remove timing and design rule 
violations, and driving gate-level simulation with estimated interconnect 
delays from synthesis are some of the ways to do this.

The objectives for verifying the implementation are

n Verify that standard components work from a functional perspective 
within the system context

The standard components should have “black box” behavioral models 
that perform all datapath and control functions including cycle-level 
timing, or that at least model the bus protocols and major bus cycles. If 
these models were not part of the system validation phase, they need to 
be verified in the implementation phase.

These models also provide a cycle-accurate functional context for the 
subsystems that are under design.
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n Verify the RTL and gate-level implementation of the subsystems 
within a cycle-accurate system context

Subsystems are usually partitioned into subblocks of 5000 gates or so 
to facilitate synthesis and concurrent design by multiple designers. 
Each of these subblocks needs to be verified from a functional 
perspective within the system context at the RTL level and the gate-
level. 

n Verify critical hardware and software interaction

Operating systems, application and link-layer control programs, and 
embedded microprocessor and microcontroller systems require 
different strategies of co-verification in order to verify control and data 
processing algorithms partitioned between hardware and software.

The strategy for achieving these objectives includes

n Using appropriate technologies

Choosing the right technology requires a thorough understanding of 
the project needs, the verification strategy, and the available 
technologies. Run time, memory, and model compile time are 
important considerations.

n Developing a complete verification test plan

Choosing the right test also requires a thorough understanding of the 
project needs and the verification strategy.

The verification test plan defines what the tests are and how they test 
and verify the system. The different test types and methods are 
disclosed. Additional requirements are defined for: new models - 
monitors, checkers, transactors; and integration of software and 
firmware utilities. Simulation technology decisions are also confirmed. 

When the test plan has been implemented and the design passes all 
tests, you know that you have finished the verification process and it is 
now safe to release the design to prototype or production 
manufacturing.

n Creating the right simulation configurations

Verifying that a subsystem or component works within the context of 
the entire system is essential. This does not mean that the entire design 
needs to be simulated repeatedly throughout the design process with 
the lowest-level models available. Careful design of configurations 
that focus verification efforts on key portions of the design and that 
make use of behavioral models to supply the system context can reduce 
overall time spent in simulation.
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n Developing structured testbenches

Understanding the structure of a good testbench can reduce the amount 
of time required to create one. Having test benches available from 
system-level design testing also facilitates the creation of block-level 
testbenches.

n Setting up verification procedures

Working with a common set of procedures allows the team to keep 
track of model updates and progress against the verification plan

n Setting up automated regression environment

Leveraging an automated verification regression environment 
increases throughput and keeps design changes from slowing down the 
pace of the project.

These topics are discussed in the following sections.
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Using Appropriate 
Verification 
Technologies

Current design verification technologies include:

n Event-based simulation

Event-based simulation is the mostly widely used verification 
technology today. Event-based simulators trace every event on every 
signal during every clock cycle. Although it is the slowest technology, 
event-based simulation has the widest applicability. These simulators 
typically support models at any level of abstraction, from behavioral, 
to RTL, to gate and transistor level. They also allow at least four states.

n Cycle-based simulation

Cycle-based simulation is faster than event-driven simulation, but it 
has narrower application. Cycle-based simulators only calculate the 
state of the circuit at the end of every clock cycle, and they typically 
only allow two states. By definition, cycle-based simulation requires 
synchronous designs and no arbitrary assignment delays. All timing 
and model parameters need to resolve at compile time which also 
requires a C compiler.

n Formal verification

Formal verification tools are most often used to verify the equivalence 
of two circuit descriptions, where the descriptions are at the same or 
different levels of abstraction. Because the equivalency is proved 
mathematically, rather than dynamically, formal verification is much 
faster than simulation. Currently available tools cannot verify that the 
design meets the system requirements, however, so formal verification 
does not eliminate the need for simulation.

n Hardware acceleration

Hardware accelerators are computer systems that have been especially 
designed to accelerate logic simulations of models at various levels of 
abstractions, including behavioral, gate, and transistor.

n Emulation

Hardware emulation tools create a prototype of a design by mapping a 
gate-level or transistor-level description into FPGAs or other 
programmable logic devices. Until recently, emulation tools did not 
support high-level (RTL) descriptions. [EE Times, September 25, 
1995]

n Hardware prototype

Verifying a design by testing a prototype is the fastest way, if you 
measure speed in terms of cycles per second. However, relying on this 
method will cause schedule delays in the long run, when late-surfacing 
errors cause costly design iterations.
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It is now common to employ several technologies on a project. Knowing 
when and how to use these technoligies requires planning the size of the 
effort targeted at each technology. Run time, as shown in Figure 5-1, and 
model build time should be considered together. Incremental compilation 
is also used to cut the model build times significantly. Complete model 
compile times for the various simulation technologies as shown in Figure 
5-1. Because of the rate of defects found is highest in initial model 
debugging of AVTs and IVTs, compiled and event-driven simulation is 
best suited to verifying design changes. Later stages of design when test 
suites are nearly completed and a large porion of tests pass, hardware 
acceleration and hardware emulation can be effective at reducing the run 
times. Throughput is increased eventhough model iteration is longer 
becuase of the relatively infrequent model changes and speed of special 
purpose hardware engines.

Figure 5-1 Model Build Times

Choosing the 
Appropriate Tests

Design verification efforts have become very sophisticated with the advent 
of high gate count ASIC-intensive systems. It is now common to find that 
the investment in verification tests and related models now exceeds the 
hardware modeling effort of the actual ASIC and standard components. 
Therefore verification of a system implementation must be thoroughly 
planned. Starting with the same architectural specification as the ASIC and 
PCB designers, the verification leader and his team will start to decompose 
the system for the purpose of defining the layers of verification startegy.
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n Operating system

n Processors and Caches

n Exception handling and error recovery

n Flow control (HW/SW)

n Dataflow and adaptation

n Functional unit

n Connectivity

n Timing

At each stage of system decompostition, architectural and 
microarchitectural features are identified and a verification strategy and 
test plan is developed. A Verification Test Plan (VTP) is a formal 
specification that plans how to verify design requirements including:

n Overall system performance utilizing a set of system resources

n Adherence to system architecture and microarchitecture features 

n Correctness of ASIC and PCB implementation

Relative to these design requirements, three categories of tests will be 
utilized for each stage of the design implementation process including:

n Performance Verification Tests

n Architecutal Verification Tests

n Implementation Verification Tests 

Each test suite which is specified in the VTP will define several key items 
including: 

n Level or Configuration

Model build necessary to test specific system features including the 
required hardware, software, firmware, and OS modules. Also includes 
the appropriate model abstractions that are supported

n Type 

Purpose of each test and how often it is run

n Method

Definition of what is being checked and how

n Technology
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Simulation technology resources and revision levels required for each 
test including the hardware simulation, software application and 
drivers, OS levels, and firmware.

n Schedule

Schedule and order of development and debug

Together test level and type define the scope of system features that are 
targeted. Test type further defines the purpose of the test and how it will be 
used throughout the overall verification process.

Verification Test Types Between AVT and IVT test suites, five types of tests are commonly used 
in the verification of large systems. Each new type represents refinements 
to the verification tests used throughout system implementation and results 
in higher confidence levels of the final product.

n Check-in tests

Represents a small set of tests which validates configuration integrity and 
basic operations every time a model or test is updated. These tests typically 
execute in a small period of time.

n Directed tests

Comprehensive set of tests which cycle through many boundary 
conditions of each architecture feature of the system. These tests also chain 
sequences together to test subsystems, HW/SW interaction, memories, etc. 
These tests typically execute in a moderate period of time.

n Random or Exhaustive tests

Generates random values and sequences of system operation to target 
testing the more combinations of IOs and model state to uncover functional 
errors, and deadlock and contention of system resources. Random testing 
is not known for its efficiency because it is very easy to generate duplicate 
tests. These tests typically execute in a long period of time and are run later 
stages of the design project.

n Stress tests

These tests target hardware and software exception handling, interrupts, 
and error recovery by simulating high activity situations. These tests 
usually require having hardware, firmware, and software necessary to 
implements higher level system protocols and control functions. These 
tests typically execute in a long period of time and are run in the later 
stages of the design project.
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n System tests

Runs system boot and initialization, diagnostics, operating system kernal 
and drivers, and application software. These tests target integrating the 
complete system. These tests typically execute in a long period of time and 
constitute 10s to 100s of seconds on actual real-world system operation. 
These tests are run in the final stages of the design project. These tests rely 
on all other tests passing before these are run.

System tests cannot replace running diagnostics, stress, and maturity tests 
on actual system prototypes, however most system integration defects can 
be eliminated simply by integrating all of the system resources and 
verifying basic system operations.

Verification Test Method The method of each verification test specified in the VTP may consider 
proving different properties about the system implementation. One or 
more methods are used together to support verifying the system 
implementation from different architectural perspectives. Methods of 
verification include:

n Coverage tests

Evaluating how much of the design is verified

n Compliance test 

Validating compliance with rules, protocols. properties, and attributes 
of the system operation

n Correctness tests

Verifying correct design implementation for the applied test.

After all of the VTP is implemented and passes, the design can be released 
to production manufacturing. Additional production tests will be 
developed including boot diagnostics, system diagnostics, and design 
maturity tests. 

Verification Test 
Configuration

As the designers move into the block implementation phase of the design 
process, the models of the system and its major subsystems start to 
proliferate. At the end of the system validation phase, there are behavioral 
models available for each of the subsystems and each of the standard 
components. At the start of the implementation phase, the subsystems are 
further partitioned into subblocks; then RTL models and finally gate-level 
models are created for these subblocks. Each of these models will likely 
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have various versions as the models are debugged and refined during the 
process of validation.

Simulating the entire design with the latest versions of the lowest-level 
models, although conceptually simple, is likely to very inefficient. 
Simulations on that scale require a lot of time and hardware resources, and 
in any case, the results would be difficult to analyze. Smaller, shorter, more 
focused testing is what is required.

A simulation configuration groups particular types of models of particular 
parts of the system together for a well-defined verification purpose. A 
simulation configuration includes a test bench—a test fixture and test 
monitors—designed to address that verification purpose. 

The models that make up a subsystem are a configuration, for example. 
Higher-order configurations, designed to verify the subsystem within the 
system context, are also required. Several factors that are need to be 
considered when designing configurations include

n Resources

The configuration needs to simulate within a reasonable period of time 
given the hardware resources available. The amount of engineering 
time required to create the tests and analyze the results also needs to be 
considered.

n Interaction of a subsystem with other subsystems or components

Configurations should be designed to test the interaction between 
subsystems or between a subsystem and its environment.

n Granularity of tests

Architecture and Implementation Verification Test, AVTs and IVTs, 
define different feature sets and subsystems which are the target of 
directed tests

A sample simulation configuration is shown in Figure 5-1 for a 
heterogeneous hardware-software system. A system application runs on a 
general purpose computer and interfaces to an embedded hardware system 
which is controlled through firmware. In this example a behavioral 
testfixture controls the ASIC operations that are to be tested. Additional 
models provide the proper interface to the ASICs from other system 
resources including 

n Heterogeneous HW-SW protocols including device drivers

n HW-HW protocols including bus functional models

n Hybrid models
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n Monitors

n Assertion Checkers

n Timing Verifiers

Bus functional and hybrid (mixed behavior and analytic) models model the 
behavior of the microprocessor, which dynamically controls bus 
operations and memory access.

The use of bus monitor, sometimes referred to as assertion checker, is also 
included to test the bus protocol for signal timing, bus contention, and 
illegal bus operations. Checkers or monitors are very effective at testing 
adherence to protocols and other complex state sequencing.

Figure 5-1 Sample Simulation Configuration

Developing 
Structured 
Testbenches

Developing good testbenches can take as long or longer to develop than the 
design models themselves. The testbench designer must understand HDL 
modeling, understand the nature of the configuration under test, and select 
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needed to accomplish this often determines the success of a verification 
strategy.

Many of the same approaches that go into good behavioral model writing 
also go into testbench development including:

n Separating test content from stimulus timing

Making changes to the test content should be kept independent from 
altering the timing of the signals

n Separating the testbench from the compiled model

The designers can run and alter multiple test suites without having to 
recompile the model. Enhances flexibility and efficiency in using 
multiple simulation technologies.

n Partitioning tests into separate testbenches

The designers can debug tests more rapidly by not waiting for long 
runtimes before debug state is reached. Computing resources also can 
be better load balanced by taking advantage of a allocating a large 
number of relatively short tests.

If possible, test benches should be designed so that the tests can be run in 
batch and the results compared automatically with expected results. 
Automatic verification can be accomplished through

n Self-checking tests

Tests verify the simulation through montiors which check proper 
protocol transitions and state sequencing, what protocol cases have 
been verified, toggle coverage, and expected values. Co-verification 
using a known good model concurrently simulates and compares 
outputs of both models to verify the newer model.

n Comparison to a golden reference

Comparison to the architectural specification or previously generated 
results files. A reference model can be generated throughout all levels 
of abstraction - architecture to gate-level. At the systems level, 
attributes and properties can be extracted from the simulation through 
monitors and assertion checkers and then compared to system 
requirements defined in the architectural specification. At the gate-
level, signals and register state values can be compared to golden 
results generated from previous behavioral, RTL, and gate-level 
simulations.

After these automated steps uncover a bug, time-consuming interactive 
debugging with visualization tools such as waveform analyzers can be 
utilized.
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A sample testbench architecture is shown in Figure 5-1. The various 
functions of the testbench are described below.

Figure 5-1 Example of Reusable Structured Testbench

n Device Test Suite

This process controls which tests are run during simulation regression. 
Typically the test suite models the DUT environment, generating 
stimulus that mimics the I/O in which the device operates.

n Results Pass/ Fail Monitor

Automatic results analysis can be performed by post-processing or 
run-time self-checking. Post-processing compares current results to a 
golden reference database. Run-time self checking can 

q Generate expected system response, possibly by using already 
verified functionality, and compare to current results

q Use ATPG and BIST/LFSR to generate and check signature

q Verify coverage levels of state transitions and assertions for valid 
and invalid design behavior.

q Compare results of concurrent simulation of two different models 
of same device
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In most cases, test benches have to handle results comparisons that 
could mistakenly indicate wrong results. These scenarios arise from 
comparing two sets of results where inherent timing is different, 
including

q Different data types

q Different valid comparison periods within a cycle

q Different model initialization cycles

q Different filtering responses

n Debug Monitor

Conditionally compiled debug code which enables interactive 
debugging including stopping and starting simulation using 
breakpoints, configuring visualization and display facilities, and 
setting signal forces to selectively test different debug hypothesis.

n Vector Capture

This process manages the opening of and capture of signal activity to 
a vector trace file, VCD file, or database for future processing and/ or 
replay. These vectors can become “Golden” vectors if 100% of the 
tests pass. If these vectors are used for replay on another model, then 
the vectors need to be sampled at the appropriate times to maintain 
cycle accuracy.

n Vector Replay

This function manages the opening of “Golden” vector trace files for 
replay and comparison with the current circuit activity. Since the 
behavioral portion of the test fixture is not needed at this point, a 
significant improvement in simulation performance can be obtained 
for gate level simulation and RTL regression testing.

n Target Tester Formatter

This function is used if pattern file formats are required for ASIC 
vendor sign-off. This process monitors the design modules in the 
configuration and writes the input and output values at the specified 
strobe times.

Setting Up 
Verification 
Procedures

The verification process involves validating the system intent and the 
implementation through all of its iterations. A clear procedure must be 
followed from start to finish. Work can be leveraged work through all of 
the stages of verification while iterations from rework and errors can be 
reduced. 
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Automating the verification model integration and regression environment 
simplifies the process to verify design changes made at various levels. 
Simulation job scripts, which automatically run different configurations 
and test suites based on updating models and tests, greatly streamlines the 
effort to conduct the verification. A design verification manager should 
develop the design configurations that will be supported and implement an 
automated process to perform model integration, builds, check-in testing, 
and release.

When a change is made to either the design or the test suite there are some 
commonly used procedures that should be followed:

1. Check updated models into source control system

2. Add new tests to check-in test suite

3. Run check-in verification tests

4. Notify group of pass/fail status of tests and/or models in new release

5. Run full regression tests (AVTs or IVTs) for all appropriate model 
configurations

6. Notify group of new release for continued design and verification

Procedures for verification can cut simulation time significantly by 
streamlining model and test suite promotion. Furthermore formal design 
verification procedures enable better tracking of the progress of the effort. 
The design verification manager should keep statistics on progress against 
plan and defect rate. 
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Figure 5-1

A detailed list of verification milestones can include:

n Number of configurations up and running

n PVTs implemented and passing

n AVTs implemented and passing

n IVTs implemented and passing

n Number of defects

n Defect rate per week

n Defect closure rate per week

Automating Simulation 
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In today’s computer, multimedia, and telecommunications systems, 
verification requires an enormous number of cycles to be simulated and 
analyzed. It now takes over 10B clock cycles to run all the verification tests 
for a general purpose RISC processor compute server. Judicious care must 
be taken when adding new tests or new model builds to the regression 
environment. Furthermore because cummulative defect levels for large 
systems typically totals in the 100s to 1000s before system sign-off, the 
resulting cummulative number of required simulation regression runs will 
also total in the 1000s or more before all defects are resolved.
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A regression server is a good way to enhance verification throughput by 
providing maximum utilization of all compute resources available for 
verification. Typically verification configurations and the verification test 
suites are defined ahead of time. When model or verification test suite 
changes are made a large number of simulation runs will need to be made 
if the model configurations and verification tests have been properly 
partitioned. 

An automated build tool, such as make, provides dependency checking and 
compile scripts which can control simulation regression by only running 
newly released model configurations which have changed from a 
previously specified snapshot. 

To realize high performance verification throughput, concurrent 
simulation are run on a heterogneous compute cluster comprised of general 
purpose servers and dedicated special purpose hardware. A network job 
queue server is used to dispatch and balance the regression runs across the 
cluster. A regression server model is shown in Figure 5-1.
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Figure 5-1 Automated Simulation Regression Environment

For large systems designs it is often mandatory to keep simulation running 
non-stop throughout the duration of the project to meet current product 
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High-Level System Design
Process Overview

The high-level design phase focuses on defining the system requirements 
and on developing and evaluating various executable models that meet 
those requirements. Once system performance and functionality have been 
validated, the actual hardware system requirements and partitioning are 
defined. Figure 8-1 shows the high-level system design flow.

Figure 8-1 High-Level System Design Flow
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The following chapter discusses the system design of a Dual Tone Multi-
Frequency (DTMF) receiver to illustrate process and methods presented in 
the previous chapters. Design of the DTMF receiver illustrates the 
application of specific top-down design methods and processes described 
throughout this guide covering systems design through implementation. 
The design models, verification, test, and physical design databases are 
presented and discussed. 

The DTMF design represents a common telecommunications application. 
The following information summarizes the DTMF design.

Key design highlights and design process decisions:

Design Environment • Utilized a single design environment for hardware and firmware 
development making use of source control and 

• Developed program to perform automatic hardware/firmware compat-
ibility checking throughout the project

• Selected SCCS and makefile for single, efficient, and low cost source 
control and hardware, software, and firmware build process

• Utilized Perl, Awk, and Csh for process automation

System Design • 16-bit DSP with single cycle instruction execution (6 clocks per 
cycle) and direct and indirect addressing modes

• Single chip solution with on-chip SRAM for small footprint
• DFT algorithm investigation resulting selection of Goertzel algorithm 

for fast and efficient execution in DSP firmware
• Meets all AT&T compatibility requirements for DTMF signalling
• Microarchitecture supports dynamic range calculation on PCM data 

resulting in 16-bit DSP architecture versus 32-bit while maintaining 
frequency response requirements

Firmware • TDSP assembler developed supporting 65 instructions with direct and 
indirect addressing modes

• getop utility developed to check and maintain consistency of assem-
bler and hardware models for implementation of TDSP instruction set
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Design Modeling and 
Verification

• Eight model build configurations verified at systems through netlist 
levels

• genpcm utility developed to generate PCM encoded signal data for 
use with C and HDL models adjusted for line noise, signal level atten-
uation, and twist

• Design models in both Verilog and VHDL

Logic Design • Datapath synthesis (Synergy) utilized due to high content of 16-bit 
logic and arithmetic operators

Design-for-Test • Full scan implemented using three scan chains
• RAMBIST with direct IO pin access utilized to test internal ram
• No JTAG or boundary scan due to no pincount restrictions

Timing Driven 
Physical Design

• Utilized hierarchical physical design to facilitate reuse of the TDSP 
and to accommodate both standard cell and datapath placement and 
route

• Over 150 datapath elements used in two datapaths for the TDSP and 
RCC blocks
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Figure 8-2 is an overview of the DTMF chip implementation including:

Figure 8-2 Chip Package Summary

Chip Package

Number of pins 22

Library technology  Philips 0.35 micron

Library wire levels  3-layer metal

Voltage  3.3V

# Clocks 4

# Gate Equivalent  53,000

Size (mm x mm)  0.075 X 0.075

Operating frequency range  DC-25 MHz

# FSMs  8

Total States in FSMs  35

# flip flops  627

Floorplan regions  6

Datapath  2

# Datapath elements  159

# RAMs  2

# Bits of RAM  6K

# ROMs  1 

# Bits of ROM  8K
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Figure 8-3 Modeling Summary

Figure 8-4 Design Verification Summary

Figure 8-5 Firmware Summary

Modeling

# lines of C for goertzel_sim  238

# lines of C for genpcm 754

# lines Verilog behavioral HDL for goertzel_sim 254

# Functional Blocks 31

# lines RTL HDL 5589

Design Verification

Cycles verified  75,000,000

Simulation throughput (cycles/sec)  11,000

# seconds of real time operation 3

# lines Top-Level Testbench 567

Firmware

# lines assembler output 536

# lines firmware source 822

# lines of Perl for tdsp assembler 1174

# lines of Perl for getop instruction correlator 227

# words(bytes) in firmware object 307(614)

DSP architecture  16-bit operand, 
32-bit accumulator

DSP instruction size 16 bit

# DSP Instructions  65

DSP Addressing modes  2
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Figure 8-6 Design for Test Summary

Design for Test

DFT strategy Full Scan, RAMBIST with 
direct IO pin access

BIST patterns 127,500 patterns

BIST tester time  9 ms (80MHz test clock)

ATPG coverage 94%

ATPG vectors  400

# Test Clocks  3
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System Specification

In a telephone network, two basic techniques are used for transmitting 
information between network entities: in-band and common channel 
signalling. In-band signalling shares the transmission facility for signalling 
and voice data. Common channel signalling uses one transmission facility 
for all signalling functions for a group of voice channels.

One common form of in-band signalling is dual tone multi-frequency, or 
DTMF. DTMF signals are commonly generated by “touch-tone” 
telephones; most of us probably have this type of telephone in our homes 
today. Figure 8-7, “DTMF Keypad and Character Frequencies,”  is a 
layout of a “full” DTMF keypad.

Figure 8-7 DTMF Keypad and Character Frequencies

Notice that keys “A”, “B”, “C”, and “D” are not usually on telephones for 
home use. These keys are mainly used in commercial applications with 
special instruments. Pressing a key on the keypad causes the telephone to 
generate the indicated pair of tones, one from the high frequency group, 
and one from the low frequency group. Figure 8-8 is an example of a 
DTMF signal along with its frequency response.
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System Specification
Figure 8-8 DTMF Signal and Frequency Response

Telephone specifications, such as Touch-Tone Calling - Requirements for 
Central Office (AT&T Compatibility Bulletin No. 105, August 8, 1975) 
define a DTMF digit as follows:

n A DTMF digit is a pair of tones, one from the low frequency group, one 
from the high frequency group.

n A DTMF digit must have a nominal level, per frequency, of -6 dBm0.

n The maximum rate for DTMF signalling of 10 digits per second (or 
typically 100mS per digit).

n A DTMF digit must be present for at least 45 mS.

n A “quiet period” must exist between digits for at least 45 mS.

n Upon reception, the signal difference between the low frequency tone 
and high frequency tone does not exceed 8 dB.

n Upon reception, the signal difference between the high frequency tone 
and low frequency tone does not exceed 4 dB.
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Algorithm Development 

A simple DTMF detector can be built using a group of band-pass filters, 
each followed by a peak detector, which has a natural time constant of 
about 35 mS. The output of the peak detector would drive a threshold 
comparator, which in turn would drive a decision logic circuit. This type 
of implementation would call for a group of analog circuits that would 
probably require “tweaking” during assembly line production, or later 
during the product life as components age.

A digital signal processing based system has many advantages over an 
analog implementation, so we’ll sample the input signal. The discrete 
signal is referenced using “n”, the sample position number in a waveform 
window, and “N”, the length of a waveform sample window.

Figure 8-9 Sampled Input Signal

The DSP system will use the “window” of samples to compute a discrete 
frequency spectrum response. Note that “N” is also the width of the 
calculated discrete spectrum.
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Figure 8-10 Computed Discrete Spectral Response

Because the DTMF receiver only needs to calculate a partial frequency 
spectrum—the frequency response at the DTMF center frequencies—a 
comb type filter response is desired. Each bandpass of our comb filter will 
be centered at one of the DTMF center frequencies.

Figure 8-11 DTMF Signal and Filter Response

The filter response could be computed by direct calculation of the DFT at 
each frequency as shown in Figure 8-11.
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Figure 8-12 Discrete Fourier Transform Computation of X(k)

Alternatively, an FFT could be performed to compute the required 
frequency spectrum. Note that a traditional implementation of both the 
DFT and the FFT algorithm calculates a full, discrete frequency spectrum 
with filter resolution defined by the length of the sample window; as 
previously mentioned, in the case of the DTMF receiver we are interested 
in a partial spectrum.

Figure 8-13 Radix-2 “FFT Butterfly” for a “Decimation in Time” Implementation
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Indeed, the FFT is very efficient when a full spectrum calculation is 
required. Lets take a look at a larger spectral response using the algorithm 
and a 16-point FFT implementation.

Figure 8-14 16-Point, Radix-4 “Decimation in Time” FFT Implementation

One thing to note about the FFT is the amount of memory “inferred” by the 
directed tree graph as the transform is calculated. Let’s assume for the 
moment that the word size of storage memory is equivalent to the word 
size of the accumulator. Through careful optimization of the calculation 
algorithm, it would be possible for the calculation to be done “in-place” 
using the same buffer for intermediate variable storage that contained the 
data sample window. This assumption is rarely the case.

Since our receiver device must be inexpensive to manufacture, we would 
like to minimize the amount of memory required to perform the spectral 
calculations. Further research proved that a modified discrete Fourier 
transform (DFT) algorithm known as Goertzel’s algorithm would be a 
more efficient algorithm since we are only interested in calculating the 
frequency response at the DTMF center frequencies.
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The Goertzel algorithm is a very efficient method of calculating a partial 
frequency spectrum using a second-order recursive computation 
(calculation of the DFT is known as the “direct form”). Because of the 
recursive nature of the algorithm and the cost requirements of our system, 
it was decided that the Goertzel algorithm will run entirely in firmware on 
Tiny Digital Signal Processor (TDSP).

Figure 8-15 is a flow graph of the Goertzel algorithm.

Figure 8-15 Flow Graph of Goertzel Algorithm

As suggested by the flow graph, the Goertzel algorithm takes the form of 
a second order infinite-impulse-response (IIR) filter. For spectral analysis, 
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the only interesting calculation is the last iteration (N-1) of the algorithm. 
At this point YK(N) = X(K), the DFT response. What may not be readily 
apparent is that only the left side of the graph is calculated for most of the 
input samples (0 <= n <= N-2). It is only when n = N-1 that both side’s of 
the graph are calculated. Since Wk

N is a complex number, complex 
multiplication is only required once per algorithm iteration.

Figure 8-16 Goertzel Flow Diagram

The motivation behind choosing the Goertzel was purely to reduce the 
number of computations (+, -, *) needed per desired spectral component in 
the calculated frequency response. Let’s summarize the required number 
of computations for our alternatives:
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n Goertzel - requires 2(N+2) real multiplications and 4(N+1) real 
additions per frequency 

The sampling frequency of our system is fixed by digital telephone 
networking equipment at 8000Hz. Using a system model of the Goertzel 
transform, it was determined that the following algorithm attributes would 
yield acceptable digit detection performance:

n System Sampling Frequency, fs = 8000 Hz

n System Sampling Period, T= 125 uS

n Signal Window length & Transform Length, N = 128 samples

n Frequency Selectivity, (fs/N) = 62.50 Hz

n Goertzel Discrete Frequencies, k = 11, 12, 13, 15, 19, 21, 23, 26

n Recalculated DTMF Center Frequencies, k*(fs/N):

q 687 Hz (desired center frequency: 697 Hz)

q 750 Hz (desired center frequency: 770 Hz)

q 812 Hz (desired center frequency: 852 Hz)

q 937 Hz (desired center frequency: 941 Hz)

q 1187 Hz (desired center frequency: 1200 Hz)

q 1312 Hz (desired center frequency: 1336 Hz)

q 1437 Hz (desired center frequency: 1477 Hz)

q 1635 Hz (desired center frequency: 1633 Hz)

Since we are dealing with discrete frequency in the digital domain, there is 
a small percentage error between the re-calculated center frequencies and 
the desired center frequencies of interest as found in the DTMF 
specification.

Once calculated, the computed spectral response must be analyzed to 
determine what, if any, DTMF digit was found. This portion of the DTMF 
algorithm will be using a finite state machine (FSM) module. All DTMF 
digit parameters are checked as defined except the twist check, which 
we’ve relaxed to +/- 12 dB for simplicity to a simple shift function.

An additional requirement which we imposed on our receiver was to 
accurately receive DTMF signals that had a per frequency level of -
45dBm0. Although it was determined that the processing algorithm could 
easily compute the spectral response using 32 bit arithmetic, the system 
busses and memory would only be 16 bit wide. Instructions were included 
in the TDSP to store all 32 bits of the accumulator, but this would require 
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additional memory and load/ store cycles. Instead we chose to add an 
adaptive gain control algorithm to the receiver firmware that periodically 
assesses the level of the transform state variables. If any state variable 
approaches half the fractional value of the accumulator (0.5), the state 
variables are divided by two. It was analytically determined that the AGC 
function would review the state variable values every 16 samples, or when 
an overflow of the accumulator is detected.
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Performance Analysis

Figure 8-17 shows an analytic network queuing diagram of the DTMF 
system, which has five servers with queues. In this closed system, the 
output sample rate is determined by the work throughput of the DSP 
processor. Work is performed on the samples in program memory and on 
incoming samples using the embedded software Goertzel algorithm. 

The input sample queue will be processed by a serial-parallel interface 
which will fill the program memory. Contention for system resources 
occurs in the DSP processor between processing a batch of input samples 
and posting the processed samples at the output in time for the next set of 
input samples to be loaded into program memory. The system model needs 
to evaluate whether all input samples arriving at a target input rate (Ir) can 
be processed by the DSP processor and output at a target output rate (Or).

Figure 8-17 Analytic Network Queuing Diagram

Using this approach, it can be determined that we would collect 128 at a 
time, this would represent a 16mS snapshot of the input signal. Further, it 
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was determined that we would allow one forth of this time, or 4 mS, to our 
DTMF signal processing algorithm. This would allow for additional 
algorithms to be added to the TDSP firmware at a later date. For example, 
in a voice mail application we may also need to compress/ expand voice 
signals using the TDSP for efficient storage/ retrieval from a disk drive. 

A full system simulation of the DTMF receiver, including the Goertzel 
transform in firmware, indicated that a TDSP operating at 25 MHz requires 
approximately 3.3mS of real time to calculate the required spectral 
response. The AGC function mentioned previously makes calculation of 
the transform somewhat non-deterministic within the range of the 
minimum and maximum calculation times required for the over 48 dB (+3 
dBm0 to -45 dBm0 per frequency) dynamic range of signals presented to 
the receiver.
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System Partitioning

Through algorithm investigation and performance requirements definition 
the microarchitecture features of the DTMF are developed, evaluated, and 
selected. System partitioning contributes to this microarchitecture design 
process where all major subunits and interfaces as well as IC packaging are 
determined. Initial technology investigation may be conducted to ascertain 
size, power, performance, and noise considerations. System partitioning 
leads to a model development plan which defines the modules and the 
model types that need to be developed for detailed design. This will be 
used by logic design, verification, and IC design teams to start detailed 
design. Figure 8-18 shows a block diagram of the partitioned DTMF 
receiver design.

Figure 8-18 Partitioned DTMF Receiver Design
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Functional Specification

The following sections give a quick overview of each of the major blocks.

Serial Port Interface 
(SPI)

The serial port interface accepts u-law compressed PCM data, serialized 
least significant bit first, and reformats the data to byte orientation. The 
interface uses a clock signal to strobe the data on the signal’s rising edge. 
A frame strobe is also used to indicate the start of a new data sample.

Once a character is received, the SPI signals the DMA controller that a new 
byte is ready to be moved to the Data Sample memory.

THe block will be coded as an explicit state machine with the following 
signal interface:

spi_clk - serial data clock input

spi_fs - serial data frame strobe input

spi_data - serial data input

clk - system clock input

reset - system reset input

dout[7:0] - parallel data output

read - parallel data output enable input

dflag - new data flag output

The serial interlace timing is represented in Figure 8-19.

Figure 8-19 SPI Timing Diagram
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DMA Controller 
(DMA)

The direct memory access (DMA) controller coordinates byte data 
movement between the SPI and Data Sample memory. Data transfer is 
initiated via the SPI. The DMA controller then attempts a data transfer by 
requesting access to the Data Sample memory via the Bus Arbiter. Once 
access is granted, the data sample byte is written to the data sample RAM.

The DMA controller will maintain two contiguous buffers (in the same 
RAM) and provide the DSP with an indication of which buffer is currently 
being filled.

The DMA block will be coded as an implicit state machine with the 
following signal interface:

clk - system clock input

reset - system reset input

read_spi - SPI parallel data output enable output

dflag - SPI new data flag input

breq - memory bus request output

bgrant - memory bus grant input

a[7:0] - address bus output

as - data address strobe output

write - data write strobe output

Memory Access Bus 
Arbiter (ARB)

The memory access bus arbiter (ARB) coordinates DMA and TDSP access 
to the Data Sample memory. The protocol is a simple REQUEST, GRANT 
scheme. Note that the arbiter is biased to allow the DSP priority access if 
both devices request at the same time.

The ARB block is coded as an explicit state machine with the following 
signal interface:

clk - system clock input

reset - system reset input

dma_breq - DMA bus request input

dma_bgrant - DMA bus grant output

tdsp_breq - TDSP bus request input

tdsp_bgrant - TDSP bus grant output
v1.2 A Top-Down Approach To IC Design 7-21



Functional Specification
u-Law PCM to Linear 
PCM Conversion 
(ULAW_LIN_CONV)

This block expands the u-Law compress PCM samples to linear PCM 
samples. The u-Law compression/ expansion mechanism is specified in 
CCITT standard G.711.

The ULAW_LIN_CONV block has the following signal interface:

upcm[7:0] - u-Law compressed PCM input

lpcm[15:0]- linear PCM output

Digital Signal 
Processor (DSP)

The Digital Signal Processor (DSP) mimics the instruction set of the 
TMS320 family of DSP’s (actually its very close in functionality to the 
TMS32010, with a MAC instruction and bus arbiter interface).

The instruction pipeline can be represented in the timing diagram in Figure 
8-20.

Figure 8-20 DSP Instruction Pipeline
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The DSP has the following signal interface:

clk - system clock input

reset - system reset input

read - data read output

write - data write output

address[7:0] - data address bus output

data[15:0] - data bus

p_read - program read output

p_write - program write output

p_address[7:0] - program address bus

p_data[15:0] - program data bus

Figure 8-21 shows the DSP read and write cycle timing.

Figure 8-21 DSP Bus Cycle Timing
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Figure 8-22 DSP Data Flow
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Results Character 
Conversion (RCC)

Once the DSP has completed the calculation of the signal spectrum, the 
results are written in block format to the “Results Character Conversion” 
(RCC) block. Once a block is written, the resulting spectrum is analyzed 
for DTMF digit content. If a digit is found, the resolved ASCII character 
representation is written to the Results circular buffer. Once a valid digit 
sequence is processed, the ASCII character is moved to the ASCII digit 
register for collection by the host.

RCC is coded as an implicit state machine with the following signal 
interface:

clk - system clock input

reset - system reset input

address[3:0]- address input

din[7:0]- data input

din_write - data input write input

dout[7:0]- data output

dout_write - data output write output

ASCII Digit Register 
(DIGIT_REG)

The ASCII digit register is simply a nine (9) bit register for holding the 
current 8 bit signal character, plus a one bit toggle flag.

Upon reset, the digit holding register is set to 0xff, and the flag is set to 1.

The DIGIT_REG has the following signal interface:

reset - system reset input

clk - system clock input

digit_in[7:0]- digit input

digit_out[7:0]- digit output

flag_in - digit flag input

flag_out - digit flag output

Memory Map (data space)

0x00 - 0xff-> tdsp program memory (256 bytes)

0x00 - 0x7f-> data sample memory (128 words)
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0x80 - 0xdf-> data scratch memory (96 words)

0xe0 - 0xef-> results character conversion (16 words)

(port space)

0x00 - 0x07-> misc. control (8 words)

0x00-> select dma to generate address bit 7

0x01-> select tdsp to generate address bit 7

0x02-> tdsp select lower data sample buffer

0x03-> tdsp select upper data sample buffer
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Design Verification Strategy

The verification strategy for the DTMF is depicted in Figure 8-23.

Figure 8-23 DTMF Verification Strategy
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directed, and system application tests. Verification milestones and 
development schedules are completed.

During the system design phase, the system was modeled in ‘C’ 
(goerzel.exe). This model analyzed the performance of the algorithm given 
a input sample stream of varying amplitude, signal skew, and noise levels. 
The input sample stream was generated by the genpcm.exe utility. In 
addition, the system model also determined the optimal length of the 
transform and desired filter center frequencies. A behavioral model was 
then written for the system (goertzel.v) to explore various architectural 
structures for computing the transform.

During the block implementation phase, all the major design blocks were 
verified using integration verification tests (check-in). The design modules 
verified were; spi, dma, arb, and rcc. Verification of the TDSP required 
assembly language routines to debug the instruction set. Two utilities were 
generated for this; getop.exe and tdspasm.exe. The utility getop.exe was 
written to parse the TDSP rtl code and generate a listing of currently 
implemented opcodes. This listing was read by the assembler 
(tdspasm.exe) as a consistency check so that only valid opcodes could be 
assembled. 

At the chip assembly level, software test were written both for direct 
testing of bus interfaces and full system simulation of signal detection for 
then phone number 1-800-862-4522 (Cadence Design Systems voice mail 
network). All the utilities (except for audiotool.exe) were written by the 
DTM F design team.
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High Level Floorplanning

High level floorplanning or logic design planning should be done as early 
on in the design process as possible. Very little physical information is 
know at this point other than number of I/O’s, number and size of macro 
blocks, and some approximate sizes for the core blocks.

Initial synthesis runs (with little or no constraints) can be run to get some 
initial size estimates for blocks and aid in region creation and placement. 
It is also important to understand the connectivity of the core blocks so that 
decisions can be made to combine blocks into larger regions without 
causing long routes between regions.

For the DTMF, an automatic block placement was done at the top level to 
get an initial block locations based on connectivity assessment. Blocks for 
each top level module were generated based on gate size estimates from 
initial synthesis runs.

The initial high level floorplan is depicted in Figure 8-24.

Figure 8-24 High Level Floorplan
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DFT Planning and Specification

DFT planning and specification are necessary to insure that testability is 
taken into account early in the design cycle. The objective of planning is 
to assure meeting the DFT objectives of the design and to help prevent 
unnecessary design iterations, or band-aid solutions for test, late in the 
design cycle. DFT planning and specification need to occur during the 
system design phase of the design process and implementation follows 
during the block-level and chip assembly design phases. Figure 8-25 
shows the DFT design flow in which these steps take place and the 
following sections explain the steps of the flow.

Figure 8-25 DFT Planning, Specification and Implementation
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DFT Strategy and 
Testability Analysis

The system design specification must include up-front input for the DFT 
specifications of the design. The definition of test requirements at both the 
system and chip level is based on a number of factors including device cost 
(area and performance impact), vendor requirements, schedule impact, and 
overall system testability.

A high-level DFT specifications document should be written, which 
describes the intended test strategy for the overall system design. Also, a 
set of product specific DFT design rules and guidelines, similar to those in 
Chapter 4, “Design for Test Methodology”, should be developed at this 
point in time.

Once the DFT specification is complete, each top-level block, and the 
ASIC design overall, should be analyzed and a preliminary design review 
done against the DFT rules and guidelines that were developed. If any 
blocks require a specialized DFT technique, for example RAM BIST, then 
a separate specification for part of the design should be written.

DFT Design 
Considerations

After the initial testability analysis is complete and all DFT specifications 
are understood, the designer can then determine the DFT structures that 
need to be added to the design. The chip’s physical block partitions can 
then be determined, where any additional DFT related blocks that are 
needed (e.g., a TAP controller or BIST controllers) in the design are 
included in the top level blocks.

Other issues related to the overall design that are effected by DFT also 
need to be considered at this point. For example, for internal scan and 
boundary scan, consider whether specially designed logic cells will be 
required. For internal scan, either scannable DFF cells can be used or in 
some cases other logic cells are added to a non-scan DFF (e.g., a 2-to-1 
multiplexor) to make the DFF scannable. For boundary scan cells from the 
chips core logic can be used to implement the require 1149.1 logic, or 
special I/O cells, with the 1149.1 boundary scan logic included as part of 
the I/O cell, may be available. The later implementation is more efficient 
in terms of area and may have better performance.

Also, DFT must be accounted for in terms of routing area (e.g., internal 
scan chain nets) and it must be included in the budgets of any design 
constraints (i.e., timing and area). Any additional I/O pins which are used 
exclusively for test should also be determined. For example, the 1149.1 
TAP controller will require 4 to 5 dedicated pins, TMS, TCK, TDI and 
TDO plus the optional TRST pin. (e.g. 5 for 1149.1).
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All of the above considerations should be well understood, as they will 
effect floorplanning the top-level of the chip and synthesis of the blocks 
later on in the design cycle.

Tester Resource 
Considerations

During the planning stages it is also important to consider the target chip 
tester needs for the design. A tester must be allocated that can handle the 
intended design. Some of the following tester characteristics need to be 
considered when selecting the target ASIC tester:

n Number of tester channels

The tester should have enough tester channels to control each of the I/
O pins on the ASIC. If not, then full broadside testing will not be 
possible.

n Tester’s timing performance

If at-speed functional tests are required, the tester must be able to apply 
data to the chip at the systems functional clock rate. Edge placement 
accuracy may also be an issue here and for characterization of high 
speed I/O - for example if signals on the chip under test need to switch 
faster than the target tester will allow.

n Tester’s vector capacity and capability

Estimate the initial size of the test set and make sure that the target 
tester has enough vector memory to hold the entire test suite, re-
loading tester memory is very time consuming and will thus add 
substantially to the test time of the chip and therefore its manufacturing 
cost. Also understand if the tester will allow multiple timesets (see the 
“Tester Formatting and Hand-Off” section on page 11-33) and if the 
tester can switch timesets without added test cycles (i.e., “on-the-fly”). 
This is particularly important if functional tests from simulation are 
used, as the timing the tester will need to handle in this case is often 
fairly complex.

Also, both design related constraints and tester resource constraints need 
to be considered in the DFT planning process. Whereas design related 
constraints may be used to determine allowable DFT area overhead or 
timing constraints (e.g., test clock frequency), tester resource constraints 
may be used to help determine DFT features required for end product 
testing. One important consideration here is providing ASIC tester support 
for large production test sets. A large test set often is the case for large full 
scan designs, with several thousand scan elements. The problem arises 
because ASIC testers typically do not have the necessary support for scan 
vector application. Those that do often require expensive hardware options 
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and special formatting software. In most cases, the tester memory is 
organized for broadside test application, which does not allow for efficient 
use of the testers vector memory in the case of scan tests. When scan tests 
are converted to a broadside format for the tester, each bit of scan shift will 
require a single tester cycle, and therefore take up one bit of vector memory 
depth per scan shift.

Figure 8-26 shows a method to partition internal scan paths, such that 
several scan chains can be shifted simultaneously, in a parallel fashion. 
This reduces the number of shift clock required to load/unload the scan 
chains of the chip and thus reduces the number of locations of vector 
memory in the tester required to load a scan vector in a broadside manner.

Figure 8-26 Configurable, Parallel Access Scan Paths

In order to partition the internal scan paths into parallel chains and plan the 
top-level scan chain configuration of the design, it is necessary to get an 
accurate estimate of the number of scannable flip-flops in each block. This 
will be used to determine how many parallel internal scan chains would be 
needed and which of blocks scan chains could be concatenated together in 
order to balance the lengths of the parallel chains. This also helps in 
determining the test pin assignments for each of the top level physical 
blocks, which will be needed for top-level physical floorplanning and 
block level synthesis.

In the case of the DTMF, three scan chains will be implemented given 
some negative edge devices in the results converter block as well as some 
internally clocked elements. Each chain has a separate scan_input and 
scan_output but they all share the scan_enable. Implementation will be 
discussed further in Chapter 11, “Chip-Level Assembly Implementation.”
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Logic Synthesis Methodology
Synthesis: The Challenge

Synthesis is a complex, constraint-driven technology, and the quality of 
the results depends largely on the expertise of the designer who creates the 
synthesizable model and understands how to constrain the tool to achieve 
the desired results. 

The quality of the results also depends on the accuracy of the timing and 
load information used to drive the synthesis process. High-level 
floorplanning tools can help predict timing and load delays due to the 
location and aspect ratios of physical placement regions; this information 
is useful in driving synthesis during the implementation phase of the 
design process. Backannotated wire load information from layout tools, if 
available, can also effectively drive the synthesis process steps during 
critical path resynthesis and drive optimization. However, the designer 
specifies most of the input to the synthesis tool, such as timing, load, and 
resistance constraints along with the synthesizable model. Thus, an 
effective modeling style and well thought out contraint budgeting are 
imperative to the synthesis process.

Deep sub-micron effects are creating the need for a more highly coupled 
integration between floorplanning tools and synthesis tools. This adds to 
the complexity of the input data to the synthesis process and puts more 
burden on the designer to make sure the synthesis tools is working with an 
accurate and complete data set. Increases in design size and complexity are 
also contributing to paradigm shift in traditional synthesis technologies by 
decoupling the synthesis and optimization processes to accommodate for 
differing optimization strategies for control logic and datapath design as 
well as size, speed, and power.

All these factors contribute to synthesis begin a potentially 
time-consuming process. In order to minimize the time spent in the 
implementation phase of the design process, it is necessary to have 
designers with an excellent understanding of the technology, and a 
well-defined strategy for using the tools. 
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Goals of a Synthesis Methodology

The goal of a synthesis methodology is to produce a structural HDL netlist 
that

n Meets system requirements in terms of functionality, timing, and area

n Is implemented with optimum technology-specific or vendor specific 
parts

n Has no timing or design rule violations, either internally or when 
integrated at the multiblock or full chip level

n Implements the DFT strategy for the design

A set of objectives to reach these goals includes

n Apply the synthesis technology appropriately

n Employ effective modeling style guidelines

n Partition large subsystems appropriately

n Use datapath or module generators

n Synthesize large subsystems from the bottom up

n Select the delay calculation algorithm appropriately

The remaining sections of this chapter discuss these objectives in more 
detail.
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Applying the Synthesis Technology 

The logic synthesis process consists of two distinct processes, synthesis 
and optimization. The synthesis process converts the HDL source code 
into Boolean expressions through logic structuring algorithms. These 
algorithms are applied based on the optimization priority, cost (typically 
area) or timing. 

The synthesis process typically performs the following functions

n Modeling style check

n Sequential logic synthesis of registers, latches, and RAMs

n Resource allocation

n Complex operator construction

n Finite State Machine (FSM) construction

n Register collapsing and sharing

n Test logic insertion

The optimization process performs the following functions

n Logic structuring

q Decomposition and partitioning

q Technology independent optimization

q Canonical graph optimization

n Technology mapping

n Critical path resynthesis

n Design rule checks

q Buffer optimization

q Maximum fanout transformation

Based on the goals of a particular synthesis run, the designer constrains the 
synthesis process and selects which optimization functions to perform. By 
using hierarchy and partitioning, the designer can also set different 
optimization goals on different partitions of the design by setting specific 
constraints on these partitions.

Synthesis processes have been specialized to support implementation 
methods for many different logic structures including:
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n Random logic

n Finite state machines

n Datapaths (including random logic)

n RAM/ROM mapping

n Soft cores (parameterized macrocells)

n Hard cores (fixed layout cells)

n Clock trees

n Gate drive sizing and buffer tree insertion

n Scan collar

n Scan logic (partial and full scan)

n Memory BIST

n Boundary scan

n JTAG control

Synthesis tools are best suited to handle control logic and state machines. 
and should be allowed to optimize freely in this domain to meet the 
designer’s constraints. For example, during optimization, the synthesis 
tool should be allowed to reencode the state machines. 

On the other hand, if the input to the synthesis process is an RTL 
description containing many datapath operations, the designer might 
choose a strategy based on the level of abstraction at which the operations 
are modeled. If the datapath operations are modeled as high-level operands 
(such as + or *), the synthesis tool can implement the operation using 
datapath techniques. If the operations are modeled at the equation level 
(propagate and generate signals for carry lookahead adders, e.g), the 
designer can prevent the synthesis tool from breaking down the structures 
and equations further by turning off logic structuring and instead only map 
the operations to the desired technology. 

Another case where the designer may want to turn off logic structuring is 
when mapping an optimized, technology-specific netlist to another 
technology or to another vendor’s library. In this case, the designer is 
satisfied that the logic structure of the design is adequate and just needs to 
be implemented with parts from a different library.

During back-end iterations and Engineering Change orders (ECOs) when 
the designer wants to maintain the netlist topology, it is possible to further 
constrain optimization so that it will only resize gates—not add 
gates—based on loading/timing requirements.
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Using Datapath Generators

Traditional synthesis tools were designed to implement complex control 
logic and state machines, where logic structuring and Boolean reduction 
techniques are very effective. These techniques are not as effective in 
optimizing arithmetic or datapath operations.

Because of this, different methodologies arose for implementing datapath 
and control logic, and oftentimes schematic editors were used for the 
datapath logic. This split methodology required that all datapath operations 
be created as levels of hierarchy so that the hand-built implementation 
could be “swapped” out later. This is an unnecessary burden to place on 
the designer as well as an unneeded data management issue.

With the advent of new synthesis technologies, a designer can aptly 
experiment with many different architectures at the chip-level, with the 
added advantage of being able to take into consideration the early 
estimates of effects due to the physical layout. These capabilities when 
used in conjunction with realistic, parasitic effects for DSM (using custom 
regional wire models for interconnect delay) can help determine early in 
the design phase issues such as the appropriate number of pipeline stages 
and the number of datapath regions. The level of observability into which 
particular algorithm is being used by the synthesis engine needs to be 
guided by the designer. For instance, the synthesis engine can infer which 
implementation of an adder for example to map into and “add” function. 
However, such inference mapping is very difficult to debug. The designer 
must have the skill set necessary to view the synthesized results in layout; 
and match the corresponding instances from a gate-level netlist to the net 
names from a higher level, RTL description. This requires knowledge of 
the synthesis, floorplanning, and placement processes.

Some synthesis tools couple their ability to recognize high-level complex 
operations with macro libraries to address the problem of implementing 
datapath logic.

A macro library is typically one of three types:

n Parameterized datapath compilation library

Synthesis maps the datapath logic to parameterized, high-level cells 
from the macro library. A datapath generator, invoked either during the 
synthesis process or as part of the back-end process, performs the 
actual implementation of the high-level cell.

n Parameterized datapath implementation library
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Synthesis maps the datapath logic to the parameterized implementation 
cells. The implementation cells contain the Boolean equations to 
implement the given algorithm, a wallace tree multiplier, for example. 
Synthesis maps the equations to the target library thus preserving the 
regular structure of the implementation.

n Fixed datapath implementation library

Synthesis analyzes the datapath logic and selects the implementation 
from a set of fixed bit-width implementation cells. These 
implementations are technology-specific netlists that have been 
characterized through synthesis or by hand.

In all three cases, the designer can link modules and functions in the design 
to specific implementations through user constraints. This is useful for 
module reuse when the function is too complex to be inferred.

In addition to fixed bit-width datapath operations, embedded blocks such 
as RAM’s can be also be added to the project macro library. This allows 
the RAM block to be characterized with timing, loading, and area 
information so that it can be accessed during optimization for accurate 
timing path extraction and drive buffering.
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Synthesizing Large Subsystems

As shown in Figure 6-1, the recommended synthesis methodology is 
actually a bottom-up process, starting at the block level, progressing to the 
multiblock level, and then to the subsystem level. At each level, the 
designer should choose appropriate loading constraints and wire models 
based on knowledge of the physical design process. Once all the modules 
at a given level have been completed and the constraints have been met, 
the next level can be started.

Figure 6-1 Synthesis Process
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Block-Level 
Synthesis

The input to block-level synthesis is an RTL description.

Figure 6-2 shows how to constrain synthesis and optimization during 
block-level synthesis. 

Figure 6-2 Block-Level Constraints

Constraints Description

Wire model Should be based on the expected size of the physical 
placement region, derived from the high-level 
floorplan. If floorplanning was not done, then 
knowledge of the vendor’s floorplanning tools is 
essential in wire model selection. If no knowledge of 
the physical domain is known, then a wire model that 
reflects the overall gate count of the design block 
should be used. If the block contains datapath 
operations, a less conservative wire model can be used. 
This model would anticipate its ‘next nearest 
neighbor’ interconnect, a strategy used in datapath 
tiling.

Boundary 
load 
conditions

Should be based on the physical placement region. If 
this block maps to a top-level physical placement 
region, then the boundary conditions should be derived 
from the subsystem-level wire model.

Timing Set the clock period, input arrival, and output required 
times.

Synthesis Set specific resource-sharing constraints based on the 
results of earlier synthesizability checks.  
Set specific FSM state encodings based on known 
design requirements. 
Set specific module generation (implementation) 
constraints based on known design requirements.  
Otherwise, use defaults.

DFT Set constraints to insert internal scan registers into the 
block, and define test clocks, scan control signals, and 
scan data signals.

Hierarchy None.

Priority Select cost (usually area).

Optimization None.
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The designer should analyze the results and consider making the following 
adjustments, if required:

n Set input arrival and output required times for individual critical paths, 
if the delays are too long.

n For datapath intensive circuits, use module generation for adders and 
subtracters.

n If the gate count is greater than 5000 gates, consider partitioning the 
block further.

n If timing constraints are not met, make timing the priority.

Multiblock-Level 
Synthesis

The input to multiblock-level synthesis is a design hierarchy containing 
optimized netlists from the block-level synthesis phase. The goal of the 
multi-block level of synthesis is to ensure that timing or loading violations 
were not introduced when the modules were integrated. 

Figure 6-3 shows how to constrain synthesis and optimization during 
multiblock-level synthesis. 

The designer should analyze the results and consider making the following 
adjustments, if required:

Figure 6-3 Multiblock-Level Constraints

Constraints Description

Wire model Same as block-level synthesis phase.

Boundary 
load 
conditions

If this block maps to a top-level physical placement 
region, then the boundary conditions should be derived 
from the subsystem-level wire model. Otherwise, it 
should be based on the physical placement region. 

Timing None.

Synthesis None.

DFT None.

Hierarchy Preserve the lower-level hierarchy in the design.

Priority Select cost (usually area).

Optimization Turn off logic structuring and technology mapping.
8-10 A Top-Down Approach To IC Design v1.2



Logic Synthesis Methodology
n Set input arrival and output required times for individual critical paths 
if the delays are too long.

n If timing constraints are not met, make timing the priority.

n To fix timing problems that cross block boundaries

q For datapath intensive circuits, re-run with RTL source using 
module generation for adders and subtracters.

q For large state machines, re-run with RTL source using dual table 
option.

Subsystem-Level 
Synthesis

The input to subsystem-level synthesis is the full design hierarchy 
containing the optimized netlists from the multiblock synthesis phase. Like 
block-level synthesis, the goal of the subsystem-level of synthesis is to 
ensure that timing or loading violations were not introduced when the 
modules were integrated.

Figure 6-4 shows how to constrain synthesis and optimization during 
subsystem-level synthesis. 

Figure 6-4 Subsystem-Level Constraints

Constraints Description

Wire model Should be based on the chip die size. Often wire 
models are worst case (versus pessimistic), so the 
designer should analyze the wire estimation values 
before selecting a wire model.

Boundary 
load 
conditions

Should be based on the pads in the design. Maximum 
input loads should be set to the maximum load value of 
the corresponding input pad. Output loads should be 
set to the input capacitance of the output pad. If the 
pads are included in the synthesis run, no boundary 
constraints need to be specified.

Timing None.

Synthesis None.

DFT None.

Hierarchy Preserve the lower-level hierarchy in the design.

Priority Select cost (usually area).

Optimization Turn off logic structuring and technology mapping.
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The designer should analyze the results and consider making the following 
adjustments, if required:

n Set input arrival and output required times for individual critical paths, 
if the delays are too long.

Once all the design timing constraints and design rule checks have been 
met, then the designer adds any remaining I/O ring logic (NANDTREES, 
pads, JTAG/Boundary Scan).

The designer runs the final design through synthesis timing report mode 
and checks timing and loading reports. If problems exist, the designer 
should consider flattening hierarchical blocks or re-running RTL synthesis 
with updated constraints. 

If only DRC problems exist, the designer should examine their severity 
and consider addressing them later during a resizing run with back 
annotated wire loads.
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Selecting the Delay Calculation Algorithm

Advances in integrated circuit processing have placed increasing demands 
on more accurate delay modeling to account for non-linear effects at the 
sub-micron level. Synthesis tools may offer a choice between a standard 
linear delay model and a nonlinear delay model. 

Linear Delay Model A typical linear delay model is described by equation (3.1.1) for Dtotal, 
which represents the delay across a gate instance, Dpropagate, plus the 
interconnect delay, Dinterconnect, to the next gate instance.

(3.1.1)

The delay from an input pin to an output pin of a gate instance, Dpropagate, 
is further made up of three components as shown in (3.1.2).

where (3.1.2)

(3.1.2a)

(3.1.2b)

Dintrinsic, kload and kslew are constant timing parameters obtained from the 
ASIC library. They are respectively, the intrinsic gate delay, the output 
drive factor (driving resistance), and the input slew sensitivity factor. L and 
S are variables and represent respectively the load (capacitance) seen at the 
output pin and the slew seen at the input pin which is further determined 
from Dload of the driving gate and Dinterconnect at the input pin.

Dpropagate is a linear function of two variables (L, S). As illustrated in 
Figure 6-5, its equation is that of a plane over (L, S) where kload and kslew 
are respectively the slopes in the L and S directions, and Dintrinsic is the 
intercept at (L, S) = (0, 0).

(3.1.3)

Dtotal Dpropagate Dinterconnect+=

Dpropagate Dintrinsic Dload Dslew+ +=

Dload kload L⋅=

Dslew kslew S⋅=

Dinterconnect R C⋅=
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Figure 6-5 Illustration of Equation (3.1.2) as a Plane over (L, S)

The interconnect delay in (3.1.3) is a product of resistance, R, and 
capacitance, C, where R and C can be obtained in various ways. C includes 
pin and wire capacitances. Pin capacitance is a cell library timing 
parameter. Wire capacitance and resistance can be estimated based on the 
wire model provided as part of the ASIC library. In the wire model, the 
nonlinear relationship between wire length and fanout are approximated by 
piecewise linear functions. Instead of using the wire model to estimate C, 
designers can back-annotate actual wire loads obtained from physical 
layout tools. 

Figure 6-7 shows the delay calculation for an example circuit, based on the 
delay parameters shown in Figure 6-6.

S

L

S∂
∂D kslew=

L∂
∂D kload=0 0 Dintrinsic, ,( )

Dpropagate Dintrinsic kload L⋅ kslew S⋅+ +=
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Figure 6-6 Delay Calculation Parameters

Library Cell Information

------------------------

`timescale 1 ns / 10 ps
`celldefine
module BUF_1 ( Z, A );
output Z;
input A;

buf (Z, A);

specify
specparam cell_area = 567.60;
specparam blocked_tracks = 2.00;
specparam total_tracks = 3.00;
specparam output_cap$Z = 0.50;
specparam input_cap$A = 1.10;
specparam rise_factor$A$Z = 0.020;
specparam fall_factor$A$Z = 0.010;
specparam rise_slew$A$Z = 0.010;
specparam fall_slew$A$Z = 0.011;
specparam max_load$Z = 32.00;

( A +=> Z ) = ( 0.41 , 0.45 );
endspecify
 
endmodule
‘endcelldefine

Wire Model Information
----------------------
Resistance/Unit Length = .000002 ns/pF*micron
Capacitance/Unit Length = .002000 pF/micron
Wire Length [4 Fanouts] = 3500 microns

Previous Stage (B1)
-------------------
Load Delay = 0.210 ns
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Figure 6-7 Example Circuit

Rise Delay Calculation (B2)
--------------------------
Rwire = [Wire Resistance/Unit Length]*[Wire Length]

= [(0.000002 ns/pF-micron)]*(3500 microns) 
= 0.007 ns/pF

Cwire = [Wire Capacitance/Unit Length]*[Wire Length]
= (0.002000 pF/micron)*(3500 microns) 
= 7.000 pF

Total Load = Cout + (ΣCin) + Cwire 
= 0.5 pF+ 4*(1.10 pF) + 7.00 pF
= 11.90 pF

Rise Intrinsic Delay = 0.4100 ns

Rise Load Delay = Rise Resistance*Total Load
= (0.02 ns/pF)*(11.90 pF)
= 0.2380 ns

Rise Slew Delay = Slew Factor*(Load Delay)Previous Stage
= (0.010)*(0.210 ns)
= 0.0021 ns

Wire Delay = [Rwire/n]*[Cwire/n]*[ΣCin]
= [(0.007 ns/pF)/4]*[7.00 pF/4]*[0.4*(1.10 pF)]
= 0.0135 ns

Total Delay = 0.4100 + 0.2380 + .0021 + 0.0135 = 0.66 ns

Rwire

Cin

B1 B2
Cout Cwire

Cin

Cin

Cin
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Nonlinear Delay 
Model

Equation (3.1.1) for Dtotal still applies in the nonlinear model. What 
changes is a new set of equations for Dpropagate as shown in (3.2.1).

(3.2.1a)

(3.2.1b)

Dslew is the output transition delay. As in the built-in model, L is the load 
seen at the output pin and S is the slew seen at the input pin. S is further 
determined from Dslew of the driving gate and Dinterconnect seen at the input 
pin. In contrast to the linear delay model, recursive input dependency 
exists in computing (3.2.1b); in other words, output transition delay 
ultimately depends on transition delays at the circuit’s primary inputs.

Functions fpropagate and fslew are nonlinear or curvilinear functions of two 
variables (L, S). Equation (3.2.2) shows an example of such a function 
from an ASIC vendor for fixed temperature, voltage and process settings. 
The function is also illustrated in as a curved surface over (L, S).

(3.2.2)

Figure 6-8  Illustration of Equation (3.2.2) as a Curved Surface over (L, S)

In the ASIC library, nonlinear models are described using discrete tables 
where table entries are sampled values of the nonlinear equation. For 
example, a  table corresponding to (3.2.1a) will have entries:

During delay calculation, values that lie between table entries are 
interpolated using various techniques.

Dpropagate fpropagate L S,( )=

Dslew fslew L S,( )=

D k1 k2 L⋅ k3 S⋅ k4 Lln⋅ k5 Sln⋅ k6 L S⋅ ⋅+ + + + +=

S

L

Dpropagate or Dslew

M N×

Dpropagate i j[ , ] fpropagate Li,(= i 1…M= j 1…N=
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Timing-Driven Design Methodology
Timing: The Challenge

Because of the increasing density, complexity, and shrinking process 
geometries of today’s designs, the placement and routing or physical 
design of a chip is becoming more complex and less predictable. Synthesis 
tools today make trade-offs based on the timing or area of various 
implementations, but they typically have little access to place and route 
data for the design. As a result, a highly complex synthesized design can 
be difficult, if not impossible, to place and route. With little access to 
physical design data, synthesis tools can miss timing goals by as much as 
100% based on the estimated versus the actual interconnect. 

Interconnect Delay 
Issues

Because of the increasing number of designs at the submicron and deep 
submicron levels, interconnect delays due to routing and the placement of 
logic on a chip are also an increasingly important factor in delay 
calculation. Figure 7-1 shows the contribution of interconnect delays and 
gate delays to the total delay in designs at the submicron level.

Figure 7-1 Relative Contribution of Interconnect Delay to Total Delay

Synthesis tools today estimate those interconnect delays based on fanout 
information and statistical wire models. The wire models characterize the 
average interconnect delay due to wire length, capacitance and resistance. 
Due to this limited amount of physical information, the delay estimation is 
prone to error. It is not uncommon to have as much as 50% error for .5 μ 
designs and 100% error for .25 μ designs in the timing numbers produced 
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by synthesis tools. It is important to note that these errors can be in either 
direction. For example, timing estimates can be larger than the actuals and 
may lead to overdesign. For designs following design rules above .7μ, this 
degree of error can be compensated for by most automatic place and route 
tools. For designs following design rules under .7μ, however, this degree 
of error significantly reduces the chance that the target circuit performance 
can be met.

Designs that are difficult to place or route or designs that contain 
significant timing problems due to interconnect delays can result in costly 
design iterations if the errors are not discovered until after the entire design 
has been placed and routed.

A good strategy is to use floorplanning tools to perform preliminary 
placement of logic on a chip and to estimate interconnect delays based on 
that placement. This timing information can then be used to drive the 
front-end synthesis, simulation, and timing tools for more accurate results.

IC Package Issues For large-scale, high frequency, high pin count designs, IC package 
contribute to IC design issues which make it imperative that the front-end 
design team get involved in the early planning of the physical chip and 
package. This upfront team effort will help to optimize the back-end 
process in areas such as I/O and macro preplacement, power bus strategy, 
row utilization, clock buffering, and critical nets timing.

Selecting packages requires an IC designer to make difficult trade-offs be-
tween the device's number of I/Os, how much power the circuit will dissi-
pate, the amount of board space the device will require, package price, 
maximum device operating frequency, and device reliability. These pack-
aging issues will continue to dominate floorplanning activities through the 
stages of microarchitectural refinements, detailed modeling, and high-lev-
el floorplans.

High frequency switching of inputs and outputs can result in separating 
power and ground planes for inputs, clock,  outputs, and core logic to elim-
inate false switching from ground bounce.  This will have significant influ-
ence over the floorplan of the design to account for multiple power and 
ground distribution.  

High frequency design also creates other signal integrity issues associated 
with package inductance and device loads.  Study of the specific RLC 
specifications for signal pins as well as power and ground pins helps deter-
mine maximum frequency of the IC in the system environment.
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System integration issues of the IC into the board environment is also im-
portant.  High pin count ICs create large routing congestion problems.  Pin 
locations need to be assigned early in the design to ensure board integra-
tion.  Initial system floorplanning will be based on establishing pin loca-
tions.

Finally, power versus package material (plastic, ceramic, HS, etc.) 
trade-offs represents the largest IC price decision. The single largest power 
consumption is based on the clock distribution.  Large capacitive loads and 
high-frequencies can account for as much as 40-50% of the power con-
sumption.  Early power planning of the microarchitecture at the high-level 
systems process is crucial. 

Power estimates are essential to understanding the allowable package al-
ternatives and board space required.  Package alternatives result in differ-
ent thermal conditions that should be well understood as it relates to 
physical package dimensions, cooling requirements and the use of heat 
sinks.  IC device reliability is also based on thermal operating conditions.
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Goals of a Timing-Driven Design Methodology

The goals of a timing-driven design methodology is to produce a structural 
HDL netlist that

n Can be easily placed and routed by the vendor

n Meets the timing requirements after place and route

A set of objectives to reach these goals is to

n Use high-level floorplanning to generate estimated parasitic delays

n Drive synthesis with estimated parasitics

n Back-annotate critical path delay and parasitics from detailed 
floorplanning into timing optimization, gate-level simulation, and 
timing analysis

n Perform early delay estimation for timing-critical blocks

n Perform dynamic and static timing analysis

The remaining sections of this chapter discuss these objectives in more 
detail.
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Floorplanning and Placement

Floorplanning tools are graphical tools that allow designers to perform 
high-level physical design by 

n Assigning blocks of logic to particular areas of the chip

n Planning system clock and power distribution

n Placing I/O cells and internal block pins

n Routing top-level buses

n Generating custom wire models

Floorplanning provides useful information about physical design at all 
stages of the top-down design process. Floorplanning can also perform 
analysis, including clock tree timing analysis and routability analysis.

Floorplanning is the most critical step in the back-end flow and must be 
done in unison with the front-end designers. The team will work together 
starting with developing the functional partitioning and initial IC package 
plan. In addition the team will look at the requirements driving the chip, to 
insure they are incorporated in the floorplan design. The floorplanning 
stage should begin at the start of subsystem model development which fol-
lows functional unit partitioning. 

The floorplan design and analysis steps results in generating the required 
control files or script files that will be used later to automate and control 
the place and route to achieve the desired requirements:

n Die Size requirements

n Row Utilization

n Obstruction and Congestion Mapping

n Constraint Files (Crosstalk, Path, Net)

n Wide wire signal routing control

n Clock tree requirements

n Power and ground distribution and routing control

n Technology/speed requirements

It is essential for the design team to consider all factors, in order to realize 
the goals of that design, whether they be speed, density, technology choice, 
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or power consumption.I

High-Level 
Floorplans

When a system is going to be implemented in an IC or multi-chip module 
(MCM), designers can use high-level floorplans generated with floorplan-
ning tools to further investigate the IC package requirements and system 
partitioning in the physical domain. High-level floorplans define the rela-
tive locations of design blocks, global routing resources including clock 
domains, I/Os pin locations, power and ground distribution, resolve area 
and timing budgets, generate models for interconnect estimation, and ex-
tract boundary condition information. Blocks can be either analog and dig-
ital macros, datapath, special cell, or standard cells. Designers use this 
information to derive synthesis timing and loading constraints.

The goal of high-level floorplanning is to inject estimated block-level 
interconnect information, region locations, and aspect ratios into the 
design process as early as possible. These estimates allow the tools 
downstream to work with more accurate and reasonable information 
instead of “guesswork,” which can lead to multiple back-end iterations, or 
worst-case estimations, which can lead to overdesign. 

Figure 7-2 shows a high-level floorplan.

Figure 7-2 High-Level Floorplan
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Detailed 
Floorplanning

Before delay estimation and timing verification, a detailed floorplan must 
be created for the overall design. Vendors provide, at minimum, a 
clustering tool that assigns logic to regions for more accurate interconnect 
estimates. This type of clustering algorithm is becoming inadequate for 
deep submicron designs because accurate delay information is not known 
until a full placement and global route are performed. Without this level of 
accuracy early on, timing analysis and design rule checking can be 
misleading, leading to expensive iterations during place and route. 
Because of the inadequacy of the clustering approach, vendors are 
beginning to require a placed design as the signoff medium, rather than the 
traditional netlist. 

A difficulty with the placement requirement is that the detailed floorplan 
is created before delay estimation and timing verification (when the degree 
of accuracy is less than 5%) and therefore the accuracy of the RTL 
optimization is suspect. Thus, it is recommended that designers perform a 
quick placement and timing analysis to determine the timing-critical 
regions and then iterate through synthesis if corrections are needed in these 
regions. 

Some vendor tools include the floorplanning job in the delay estimator and 
design rule checking tools. This leads to much more accurate delay and 
load prediction. At this point, I/O location should also be known and 
included as part of the floorplan.

The finished floorplan will provide obstructions for the placer for any 
preroutes that have been created during the floorplanning process. For 
example, any power/ground rings or stripes will have been inserted during 
the floorplanning step so that the placement tool can avoid placing cells in 
areas that would cause shorts.
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Figure 7-3 shows a detailed floorplan. 

Figure 7-3 Detailed Chip Floorplan
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Timing-Driven Synthesis

Obtaining the most timing-accurate results from synthesis requires

n Setting accurate timing constraints

n Using the correct wire model

n Setting accurate load constraints

n Using estimated parasitics from placed data

Accurate Timing 
Constraints

Timing constraints specify signal arrival times and required times and 
define clock signals, clock periods, and clock skew.

Sequential arrival and required times are set relative to the first edge of the 
clock. In other words, sequential inputs are clocked by the first edge and 
arrive after some propagation delay. Sequential outputs are also clocked by 
the first edge of the clock and arrive after some delay. The required time 
constraint requires the synthesis tool to make sure the propagation delay 
does not exceed the required time. Combinational arrival and required 
times are set relative to one another (required time must be greater than the 
arrival time). Internal register to register to delays will be constrained by 
the clock period and the setup checks.

Figure 7-4 shows the basic timing paths through a module.

Figure 7-4 Basic Timing Paths
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Synthesis tools compute timing paths in the following manner:

n Paths are traced using cell polarity information (inverting versus 
non-inverting cells). Worst-case is used for non-deterministic cells 
(xor, xnor, for example).

n Paths originating at storage devices include the clock-to-output delay.

n Clock paths are assumed to be ideal (no load delay is included).

Setup and hold calculations are based on the timing diagram in Figure 7-5.

Figure 7-5 Timing Checks

A clock constraint must be set on all clock nodes. This can be a module 
input or an internal node. The clock constraint should be set so that the first 
edge is the active one. This simplifies the setting of arrival times. Skew can 
be added before and after each clock edge. 

It is important to understand the definition of clock skew in the context 
used by synthesis tools. For purposes of nomenclature, let’s describe 
various clock skew definitions. Also, for simplicity, assume a synchronous 
positive edge-triggered clocking methodology, although the definitions 
here apply to most any clocking scheme. The following two diagrams will 
be used as the basis for discussion.

Figure 7-6 Clock Distribution
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Figure 7-7 Clock Waveforms

Same-cycle/on-chip 
clock skew

This skew is the worst-case difference of clock arrival times between any 
same-chip flip-flops that drive each other on the same clock cycle. A 
diagram of the circuit is shown in Figure 7-6 and a waveform is shown in 
Figure 7-7. FFA drives FFB through some combination logic cloud, which 
could minimally be a wire. The probe points are located physically at the 
FF clock input pins. The skew difference between these points is shown by 
the box labeled “On-chip clock network differences.” Ideally, this skew 
would be used in the minimum path timing calculations, but it is not 
usually supported by synthesis tools. Also, since the difference between 
this skew value and the different-cycle/on-chip skew value is usually 
small, it is generally not used.

Different-cycle/on-chip 
clock skew

This skew is the worst-case difference of clock arrival times between any 
same-chip flip-flops that drive each other over one clock cycle minus the 
clock cycle time. This is shown in Figure 7-7. It is this skew that is used by 
synthesis tools. The major components of this skew are because of 
variations due to the clock distribution network on the chip and 
cycle-to-cycle jitter introduced from the chip clock input signal variations 
and/or on-chip PLL variations. Note that the internal clock is generally 
distributed after the PLL. It is also important to note that cycle-to-cycle 
jitter is generally much less than the long-term, or multiple-cycle, jitter 
typically quoted on PLLs. For on-chip PLLs, the ASIC vendor should spec 
both cycle-to-cycle jitter and long-term jitter. For synthesis, divide the 
different-cycle/on-chip skew value by two and use this new value for both 
the “plusskew” and “minusskew” variables. 

Probe Point A

Probe Point B

Same-cycle skew

Multi-cycle clock skew
plus 1 clock period
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Different-cycle/off-chip 
clock skew or system 
clock skew

This skew is the worst-case difference of clock arrival times between any 
two system flip-flops that drive each other on different clock cycles minus 
the clock cycle time. This is the clock skew that should be used when 
computing the system timing. It includes skew introduced by the 
board-level clock distribution network, the differences in the on-chip clock 
distribution delays as referenced from the clock input pin(s), and any jitter 
components introduced either on-chip and/or by the board.

Wire Models Synthesis tools in general typically choose a wire model based on the size 
of the current block being synthesized. It is recommended, however, to 
explicitly specify one wire model for each synthesis run based on the size 
of the target physical placement region. This requires knowledge of the 
vendor floorplanning tools and physical design methodology. 

Accurate Load 
Constraints

Synthesis tools perform one or more of the following design rule checks 
during optimization:

n Maxload <= Cout + ΣCin + Cwire

n Maxfanout <= ΣFanin

n Maxtransition <= [Cout + ΣCin + Cwire]*DriveFactorMaximum

Typically, either maxload or maxfanout is used (not both). Maxtransition 
is optional. Synthesis tries to satisfy all rule checks, if possible.

To ensure that final synthesized result passes vendor design rule checks, it 
is imperative that proper module boundary loading conditions and wire 
models are used.

For example, if the vendor floorplanner partitions the design into 5K gate 
blocks in a 100K base array, the wire load of the top level block 
interconnect must be included in the boundary loading constraints of the 
lower-level modules.
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Figure 7-8 ASIC Gate Array Floorplan

Wire models model worst-case routing. That means that the outputs of 
modules that cross physical design partitions must be able to drive at least 
a worst-case load. Therefore, output load constraints need to be set 
accordingly when these blocks are synthesized. This ensures that a buffer 
can be inserted at the top level during drive optimization. 

Loading constraints specify the boundary conditions of the module. The 
designer can specify the drive strength (resistance) of an input along with 
the maximum load of the gate driving that input. This approach allows 
inputs with large internal fanouts to be appropriately buffered and accounts 
for the wire and load delay from the input port to the fanout device(s). 
Similarly, on the output, loading constraints ensure that the module outputs 
are properly buffered.

Some general guidelines for specifying these constraints are:

n Input resistance should be set to the resistance of a standard gate 
(NAND2, e.g.). 

n Input maximum load should be set to be less than the maximum load 
of a standard gate (NAND2, etc.) plus the wire load of the estimated 
number of fanouts. 
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Average Route

Worst-Case Route
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n Output load should be set to be greater than one wire load (use 
appropriate wire model) plus one standard load. Depending on the 
library, this can be increased.

Figure 7-9 Drive Optimization
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Cwire (1 fanout) = 120 pF (100K wire model)

Cwire (2 fanout) = 200 pF (100K wire model)

C1 = C2 = 1 pF (Standard Load)

Max Load (2X Buffer) 128 pF

Max Load (3X Buffer) 192 pF

Max Load (4X Buffer) 256 pF

Modules A, B, and C were each synthesized separately with an output load 
constraint of 120 pF. This was used so that each module output could drive 
at least a wire load (estimated using 100K wire model) between blocks at 
the top level. As a result, a 2X buffer was inserted (maximum load = 128 
pF) to drive the output. A 5K wire model was used so that internal 
interconnect of each of the blocks would be properly driven. 

The lower level netlists were consolidated and a top-level drive 
optimization run was done using a 100K wire model. Because CW had a 
fanout of two, it was estimated to be 200 pF. Since the 2X buffer was 
overloaded, a 4X buffer was inserted to drive the 200 pF load (CW2). 
Since the 2X buffer was driving the output of module A, it could 
sufficiently drive CW1 and the standard load of the 4X buffer (121 < 128).

It is important to understand that if the output of module A was driven by 
a standard gate with a maximum load of 32 (for example), the insertion of 
the 4X buffer could not be done without causing a DRC error within 
module A. This would have required another iteration to resolve.

Estimated Parasitics It is recommended to drive synthesis with parasitics (estimated capacitance 
and resistance from floorplanning), if that information is available.

Synthesis tools can read in a Standard Parasitics Format (SPF) file for 
timing-driven synthesis. Synthesis takes the extracted interconnect 
capacitance from the SPF and places a constraint on the output port of the 
selected cell. 
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Placement and Route

Placement The success of placement is dependent on two factors; the quality of the 
floorplan and the accuracy of the constraint files. The floorplan must ad-
dress each of the critical requirements driving the design in order for the 
placer to achieve a routable placement that will meet the timing goals of 
the design. The constraint files must constrain the right nets with appropri-
ate constraints without overstraining the placement tools. The histogram of 
net delays generated after synthesis or timing verification should be used 
to determine what percentage of the total nets needs to be constrained and 
what the constraints could be.

Several placements can be run simultaneously with different constraint 
set-ups to achieve the design goals. After an acceptable placement is 
achieved, the special control files generated from floorplanning would be 
executed. Again, these files would be used to automate and control clock 
tree synthesis, wide wire nets and other special requirements. After each 
step in the placement process, extraction and back-annotation to synthesis 
and timing verification would be performed. The accuracy of both the es-
timated and extracted data is vital to guarantee early detection and poten-
tial timing problems. The recommendation here is to back annotate to a 
hierarchical gate level block for the logic team to simulate. This will in-
clude a new netlist, if for example, clock tree synthesis was implemented.

Route At this point in the process, all floorplanning has been completed and all 
macro blocks and standard cells have been placed,. During the routing 
phase of the design process, the designer will need to complete any special 
routing that was not prerouted during floorplanning.  Special routing con-
trol is typically required for routing of supply, power, and clock nets. The 
clock net tree configurations will have been created and placed or during 
automatic clock tree synthesis. Routing proceeds using a balanced router 
to meet the target delay and minimize the skew between the leaf cells at 
each clock level and between levels.

The success of the routing step is again dependent on the quality of the pre-
vious steps. A placement which has taken routing resources and congestion 
into consideration will be much more likely to produce a routable design 
than one that has not. There are several facts that should be taken into ac-
count during the routing step depending on the requirements for the design. 
Examples of these would be crosstalk variables, number of vias used, 
wrong way wiring, critical nets, wide wire nets, extra spacing nets, phan-
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tom logic, and clock tree buffering. 

The power routing preroutes that were done during floorplanning would 
include any power rings that go between the design IOs and stripes through 
the cell placement area.  The macro blocks and standard cells will now 
need to be connected to those power pre-routes. This will be done with a 
combination of automatic and manual routing depending on the types of 
power pins and the desired connection points. 

After the special routes are complete, global routing will be run against the 
signal nets to allocate the routing resources available in the design. The 
global route function will create a coarse regular wiring layout based on 
obstructions resulting from special wiring, clock wiring and placement. 
The global route function will look at the entire design and work to balance 
wiring congestion with minimizing wire lengths. Detailed or final routing 
will be created next for the signal nets based on the plan created by the glo-
bal router. Metal layers and vias will be assigned to each net based on the 
plan created by the routing layers descriptions in the technology used by 
the designer.  The final route function will attempt to complete all signal 
connections, reroute some wiring to reduce the number of vias and opti-
mize wire lengths, check for pins with multiple ports and reroute wires to 
alternate ports to improve results, move wires to account for blockages in 
cells or a cover macro and do some wrong way routing to avoid floorplan 
obstructions.

The detailed router will be run in repair mode to remove any DRC viola-
tions that may have been created during final routing. Final clean-up can 
be used to optimize the results of the final route by removing unneeded 
vias and unnecessary routing jogs, where possible.

Once all violations from froute have been removed a DRC and LVS check 
of the routing in the design versus the abstract description of the cells 
should be performed.  (A final DRC and LVS check needs to be run against 
the design when it has been converted to a layout view to account for the 
complete description of the cells contained in the cell layout views).  The 
design will be checked for DRC violations such as antennas, shorts, mini-
mum spacing rules, insufficient overlaps, missing vias and long wires rout-
ed in nonpreferred directions.  Additional checks should be run on the 
special and regular wiring for opens, antennas, partially-routed nets, un-
connected pins and pins with more than one used port.  If violations are 
found in the design after running these checking functions, the designer 
will need to return to the froute and repair functions to try to resolve the 
violations. 
v1.2 A Top-Down Approach To IC Design 9-17



Placement and Route
Post Route Extraction After each step in the routing process, extraction and back annotation 
would be performed. Again,  as in placement, the accuracy of the extrac-
tion data is vital to guarantee silicon matches simulation as well as to the 
over-all cycle time required for the design. Remember the place and route 
flow will be different for each IC, depending on the goals you are trying to 
achieve. After final route, connectivity and DRC checks would be run by 
the routing tool to check for any violations the router may have caused. A 
subset of the verification rules should also be run to check for any DRC or 
LVS violations. Once this is clean, the cell layout data would be inserted 
and full checking would be performed.

Extraction methods need to be flexible enough to handle block intercon-
nect parasitic extraction and incremental ( only data which was changed ) 
extraction as well as full chip flat or hierarchical detailed device and inter-
connect parasitic extraction.

During extraction a single net should be broken into a multitude of R/C 
networks. These R/C networks must be combined intelligently to form a 
single R/C element between the terminals of that net. 

The move to an area router requires the interconnection extraction to take 
into consideration over the cell routing as opposed to just channel routing. 
The topology encountered with over the cell routing is more complicated 
and results in a tremendous increase in parasitic capacitance structures to 
be examined and the sheer numbers of elements in a given interconnect to 
be increased.

Process feedback is a critical element in the generation of accurate inter-
connect delays. The actual oxide thickness must be used for capacitance 
value extraction. The thickness and average width of the actual intercon-
nect material is important also. It is no longer acceptable for the extractor 
to use drawn widths for area capacitor measurement as this may lead to 
overly optimistic values. As mentioned above the database must have ac-
cess to the process generated data. The process line measures line width, 
oxide thickness and material thickness as well as doping levels and electri-
cal measurements ( Wafer Acceptance Test ) results. 
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Synthesis Back-Annotation

Once the design has been run through the vendor floorplanning and/or  
placement tool, wire load information can be back-annotated into synthesis  
for timing optimization and final design rule check. 

If the vendor has an ECO capability, then use the "resizing" mode so the  
netlist topology will not change. Constrain Synergy to only work on the  
problem areas by hierarchy management constraints. 

Figure 7-10 Buffer Resizing
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Performing Early Delay Estimation

Depending on the vendor kit, it may be possible to estimate delays before 
the entire chip is at the gate level. If this is possible, then the designers 
should perform delay estimation for timing-critical design blocks. This 
step provides an extra level of confidence that the circuit will perform at 
speed. 

The interconnect delay is typically estimated based on an algorithm using 
technology-specific resistance and capacitance values. In some cases, a 
preliminary floorplan is created to identify gate clusters and placement 
regions for more accurate delay prediction. In addition, I/O pin locations, 
device package, and metal layer information may also be used for further 
accuracy. The cell delays and timing checks may also be re-calculated 
based on the additional wire load and the calculated input edge rate. The 
delay information is typically written to an SDF file, which can be read 
into a gate level simulation or timing analysis run. 
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Timing Verification

Timing verification should be used throughout the design process.  The 
primary goal of timing verification is to prove that all design timing re-
quirements have been met.  Static timing analysis and timing-based simu-
lation are both required to ensure complete analysis and verification are 
performed.  Both methods should verify the full operating range of the cir-
cuit (mil, commercial, industrial).   Static analysis performs the most com-
prehensive analysis.  Special timing mode cases can be defined making the 
verification more accurate for design attributes such as logical false paths, 
multiple-cycle paths, etc.  In timing-based simulation, multiple simulation 
are run which cover the process corners. Timing-based simulation is typi-
cally single delay mode simulation thus several runs are needed to verify 
the full operating range of the circuit.  Like with fault simulation, develop-
ing simulation vectors which covers the full range of operation is required 
to get an accurate verification.

Timing analysis provides critical data which is used in the concurrent syn-
thesis, floorplanning, placement process.  Specifically timing analysis pro-
duces refined constraints which are directly utilized throughout the process 
including

n Maximum frequency calculation

n Slack/bottleneck analysis

n I/O timing reports

Gate level timing analysis is necessary after floorplanning, placement, 
routing, netlist translation, and any  layout translation (converting from 
one design rule set to another).  Timing analysis is used to verify that the 
design meets the system timing objectives.  During the logic synthesis por-
tion of the design process any obvious timing critical problem areas should 
have uncovered.  These timing issues should have been addressed during 
the synthesis phase, and the design should be free of violations from a syn-
thesis tool timing perspective.

After each section of the back-end is completed, i.e. floorplanning, 
placement and routing, and netlist translation, and layout translation the 
delays must be back annotated to the timing analysis tool.

Synthesis tools create a Standard Delay Format (SDF) file with every run. 
The SDF file contains path delay information for the critical paths in the 
synthesized design. To obtain the most timing-accurate simulation and 
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timing-analysis results of the gate-level implementation 
models—particularly timing-critical models—designers should read this 
SDF file into the simulation or timing analysis run. 

However, once the design has been floorplanned, or even placed, a new 
level of accuracy can be achieved for interconnect and device timing. 
Because of this, it is recommended that calculated delays be 
back-annotated and a full chip timing analysis performed.

It is recommended to use a blend of simulation and static path analysis to 
provide a highly accurate timing analysis. Static path analysis is used to 
determine fast and precise min/max timing at storage device input, 
allowing the timing checks built into each storage device model to be 
verified precisely.

Simulation adds more precision to the path analysis than is possible with 
purely static algorithms. This capability is generally used to simulate the 
clock system of the design, enabling timing analysis to handle designs with 
any form of clocking system - even asymmetrical, multi-phase, and gated 
clocks.

Final simulations should also cover the testing required by silicon such as 
AC timing vectors. Any testing which can be simulated with the HDL 
simulators (Iddq is an exception) should be verified with the tester input 
and output vectors.  This will prove out the test vectors and reduce the time 
spent debugging final silicon.
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Overview
Overview

Block implementation describes the design process starting from RTL 
design capture and ending with placement and gate level block logic 
verification of the implementation. Figure 0-1 shows the block 
implementation process diagram. For the purposes of this document, a 
design block is defined as any design partition which will be synthesized 
and/or functionally verified as a standalone design unit. 

Design blocks can be synthesized standalone for many reasons including 
block size, constraint control, test strategy, optimization goals, etc. In 
addition, the design block may be simulated standalone because its 
functionality may be more easily verified by applying implementation 
verification unit tests (IVTs) outside the context of the whole design.
v1.2 A Top-Down Approach To IC Design 10-1



Overview
Figure 0-1 Block Implementation Process Diagram
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Overview
Figure 0-2 is an example schedule of the block implementation process. 
This is intended to reflect relative allocation of time for each of the process 
steps and their dependencies. It is not meant to reflect absolute duration of 
these tasks as they will vary greatly depending on block size and 
complexity.

Figure 0-2 Block Implementation Schedule
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Subsystem Partitioning

The DTMF was partitioned at the system level into firmware (the Goertzel 
algorithm) and hardware components. The core hardware component of 
the DTMF is partitioned into the following parts:

n 16-bit DSP processor

n 512x16 read-only memory

n 256x16 data sample random access memory

n 128x16 program random access memory

n Results character converter

n Additional control logic and peripherals

The approximate gate count is 53,000 (including memories).
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RTL Models

The principle areas of interest during block implementation for this design 
are 

n The TDSP processor

n The results character converter

n The macro blocks

Tiny Digital Signal 
Processor

The 16-bit digital signal processor, which has 65 unique instructions in its 
instruction set architecture, was modeled both in hierarchical Verilog HDL 
and VHDL. The modules for the DSP are:

n Instruction Decode

n Instruction Execute

n ALU

n Data Bus Interface

n Program Bus Interface

n Port Bus Interface

n Accumulator Status

n Multiplier

n Update Auxiliary Register

The instruction execution and decode modules where written as finite state 
machines modeling the six clock cycle instruction execution with true 
clock cycle accuracy. A portion of the Instruction Execute unit state 
machine is depicted in Figure 0-3.
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RTL Models
Figure 0-3 Instruction Execution Module Code Fragment

To maintain consistency during firmware development, a utility was 
written to only allow the assembler to accept implemented instructions 
while the instruction set was being implemented. To accomplish this, 
comments were added to the code (asm:MAC, e.g.) to indicate that an 
instruction had been implemented. This can also be found in Figure 0-3.

Note also that the opcode definitions were implemented as ‘define 
constructs in verilog. These were defined in a header file (tdsp.h). Figure 
0-4 show a portion of the tdsp.h file. This allowed the opcode definitions 

 `HI_NIB_C: begin
case (ir[`S_OP])
// asm:MAC
`MAC:
begin

if (phi_3 && ! two_cycle & ! three_cycle)
begin

skip_one <= 1 ;
sel_op_a <= `OP_A_TOP ;
sel_op_b <= `OP_B_MDR ;

end
if (phi_6 && ! two_cycle & ! three_cycle)
begin

p <= mpy_result ;
end
if (phi_6 && ! two_cycle & ! three_cycle)
begin

two_cycle <= 1 ;
end
if (phi_3 && two_cycle & ! three_cycle)
begin

sel_op_a <= `OP_A_ACC ;
sel_op_b <= `OP_B_P ;
alu_cmd <= `ALU_ADD ;
two_cycle <= 0 ;
three_cycle <= 1 ;

end
if (phi_6 && ! two_cycle & three_cycle)
begin

acc <= alu_result ;
if (alu_result[`S_ACC_OV])

                                ov_flag <= 1 ;
acc <= alu_result ;
if (alu_result[`S_ACC_OV])

                                ov_flag <= 1 ;
three_cycle <= 0 ;

end
end
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RTL Models
to exist in one file and be accessed consistently by all design, verification, 
and firmware engineers.

Figure 0-4 TDSP Header File
`define LAR ‘TP'h38 // Load Auxiliary register
`define LARK `TP'h70     // Load Auxiliary register with a constant
`define LARP `TP'h68     // Load Auxiliary register pointer
`define LDP `TP'h6f     // Load data page pointer
`define LDPK `TP'h6e     // Load data page pointer with a constant
`define LST `TP'h7b     // Load status from data memory
`define LT `TP'h40     // Load multiply temporary operand
`define LTA `TP'h42     // Load multiply temporary operand and 

// accumulate previous result
`define LTD `TP'h46     // Load multiply temporary operand, 

// accumulate previous result, shift data memory
`define LTP `TP'h43     // Load multiply temporary operand,

// previous result moved to accumulator
`define LTS `TP'h44    // Load multiply temporary operand and 

// subtract previous result
`define MAR `TP'h68     // Modify auxiliary register
`define MPY `TP'h6d     / Multiply
`define MPYK `TP'h80     // Multiply immediate
`define MAC `TP'hc0     // Multiply and accumulate
`define NOP `OP'h7f80   // No operation
`define OR `TP'h7a     // Or with low accumulator 
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RTL Models
Results Character 
Converter

The results character converter reads the contents of the 8 spectral 
component registers and determines which high and low frequency 
components exist. In addition, it verifies that the spectral component 
magnitudes meet the required specification and outputs the detected 
character. Figure 0-5 shows a block diagram of the dataflow through the 
RCC.

Figure 0-5 Results Character Converter Block Diagram
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CHECK TWIST

LOW HIGH

CHARACTER ?

OUT_P1

OUT_P2

LOW HIGH
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RTL Models
Figure 0-6 shows a portion of the HDL code for the Results Character 
Converter block that performs the magnitude comparison. Note the three 
subtractions required for this operation. During synthesis, it is required to 
constrain the synthesis tool to perform resource sharing on these 
operations to minimize the area impact to the chip.

Figure 0-6 Results Character Converter Code Fragment
always @(posedge clk)
    begin : rcc_machine
    if (reset)
        disable rcc_machine ;
    else if (go)
        begin
        low <= 3'b100 ;
        high <= 3'b100 ;
        clear_flag <= 1 ;
        out_p2 <= out_p1 ;  // digit pipeline
        gt_comp( r697, r770, r852, r941 ) ;
        @(posedge clk)
        clear_flag <= 0 ;
        if (gt)
            begin
            low <= {1'b0, `V_697} ;
            low_mag <= r697 ;
            end
        gt_comp( r770, r697, r852, r941 ) ;
        @(posedge clk)
        if (gt)
            begin
            low <= {1'b0, `V_770} ;
            low_mag <= r770 ;
            end
        gt_comp( r852, r697, r770, r941 ) ;

...
task gt_comp ;
    input [15:0] opa, opb, opc, opd ;
 
    reg [16:0] cmpb, cmpc, cmpd ;
    begin
 
    @(posedge clk)
        cmpb <= opb - opa ;
    @(posedge clk)
        cmpc <= opc - opa ;
    @(posedge clk)
        cmpd <= opd - opa ;
    @(posedge clk)
        gt <= cmpb[16] & cmpc[16] & cmpd[16] ;
    end
endtask
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Macro Blocks The DTMF architecture defined requirements for three macro blocks.

n 512x16 ROM

n 256x16 RAM

n 128x16 RAM

These blocks were implemented by the target ASIC vendor. Requirements 
were given to the vendor early in the design process for implementation. 
In return the ASIC vendor provided behavioral models with estimated 
timing information in time for initial RTL simulation of the chip. The 
physical abstracts (with metal1 and metal2 obstructions) for the blocks 
were also provided by the vendor so that they could be used in the chip 
floorplan. The RAM models were modified to provide some additional 
debug capabilities. Figure 0-7 shows a portion of the RAM code to display 
write events and dump contents to a file triggered by a named event.
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RTL Models
Figure 0-7 RAM Code Fragment
/*
 * write logic
 */
always @(negedge wr)
begin: write_block

mem[a] <= din;
`ifdef DSRAM_DEBUG

if (test.debug_print)
$display("%t %m : Writing %h at address %h", $time, din, a);
`endif

end

/*
 * dump logic
 */

`ifdef DEBUG_DUMP_RAM
function dumpIt;

input t ;
integer i ;

begin
$write( " **  Dumping ram: (%m)\n" ) ;
$fwrite( test.dumpRamFile, "//-----------------\n" ) ;
$fwrite( test.dumpRamFile, "// Dumping ram: (%m)\n" ) ;
$fwrite( test.dumpRamFile, "// current time: %t\n", $time ) ;
for( i = 0 ; i < words ; i = i + 1 )
begin

$fwrite( test.dumpRamFile, "@%h %h\n", i, mem[i] ) ;
end
dumpIt = t ;

end
endfunction
`endif
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Design Verification

The goal of design verification is to verify that the DTMF system works 
correctly at both the RTL and the gate level of implementation. The design 
was verified at two levels; the DSP processor and the DTMF system. An 
implementation verification test plan (IVT) and necessary test benches 
were written to exercise the entire instruction set. Note that to verify the 
TDSP instruction set, architecture verification test (AVTs) were also used.

The system-level testbench for the DTMF verifies a sequence of eleven 
characters input to the design in ulaw compressed PCM format. Each 
character is then uncompressed, converted to linear PCM and then written 
to the data sample memory. The character sequence was (1-800-862-4522) 
which is the Cadence Design Systems voice mail network number.

The same testbench was used for both RTL and gate-level simulations. 
Built-in simulator functions were used to automatically generate binary 
output files and compare them with previous simulation results. The 
testbench is output (character detection) is shown below for NC-Verilog.

Figure 0-8 Simulation Output
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Design Planning

Prior to beginning the synthesis process, it is important to understand and 
analyze the physical design requirements. This allows the designer to drive 
the synthesis process to arrive and a more accurate first pass results instead 
of back-annotating and iterating to meet timing and drive strength 
requirements. 

In the case of the DTMF, the design is not I/O limited and therefore the 
majority of the routes will be in the center of the core. The I/O’s were 
located on the right and left sides for accessibility. Once the locations are 
determined for the design blocks and the pin placement is determined, 
accurate wire models can be generated as well as estimated block 
interconnect. This information is then passed to the synthesis process. 
Figure 0-9 shows the results of I/O placement and pin optimization on the 
original high level floorplan from Chapter 7, “High-Level System 
Design,”. 

Figure 0-9 DTMF Top-level Floorplan

TDSP
RCC

ROM_512 RAM_128 RAM_256
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Implementation
Implementation

The hardware component of the DSP can be synthesized in four passes (All 
other top level modules for the DTMF can be synthesized in a single pass). 
The first two passes synthesize the ALU and the multiplier separately. The 
third pass synthesizes the rest of the DSP, while preserving the ALU and 
the multiplier from the earlier passes. The final pass performed drive 
optimization on the entire design, and is described in Chapter 11, “Chip-
Level Assembly Implementation.” 

Figure 0-10 shows the synthesis constraints as they would be defined for 
Synergy for the ALU. The constraints would have the following effect:

n Identify SmartBlocks, a macro library, as the target library

n Select a wire model, based on the expected gate count of 2000

n Require the signals to arrive at the output ports no later than 40 ns after 
the active edge of the clock

n Preserve the original hierarchy of the ALU description

n Define a clock with a rising edge at 0, a falling edge at 25, and a period 
of 50

n Require Synergy to use a single resource for all addition operations of 
8 bits and a single resource for all subtraction operations of 8 bits

n Identify the name and characteristics of the reset signals for the FSMs

n Run Synergy in normal mode with cost (area) as the priority
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Implementation
Figure 0-10 ALU Constraints

Figure 0-11 shows the synthesis constraints as they would be defined for 
Synergy for the multiplier. The constraints would have the following 
effect:

n Select a wire model, based on the expected gate count of 2000

n Require the signals to arrive at the output ports no later than 90 ns after 
a change on the inputs (the multiplier is a two cycle operation).

n Preserve the original hierarchy of the multiplier description

n This is a combinational block so no clock constraints are required.

n Identify the name and characteristics of the reset signals for the FSMs

n Require Synergy to generate explicit (name-based) port lists in the 
modules.

n Run Synergy in normal mode with cost (area) as the priority

The ALU is a datapath-rich module was also implemented using 
automated datapath techniques (SmartBlocks library). All datapath 
partitioning and tiling was done automatically by the synthesis tool 
through procedural calls to generate the datapath layout information (tile 
files). There were a total of 15 datapath functions in the ALU which 
comprised about 75% of the ALU module.

The multiplier is also a highly regular datapath structure. The same process 
was used to synthesize the multiplier. Figure 0-11 shows the constraints as 
defined for the multiplier. 

library -macro SmartBlocks
wire_model 5K_DLM

timing -required -rise 40.000000 -g
timing -required -fall 40.000000 -g

preserve_hier_tree

clock clk -rise 0.000000 -fall 25.000000 -period 50.000000
operator PLUS -width 16 -opcount 2 -partcount 1
operator MINUS -width 16 -opcount 2 -partcount 1
fsm -s alu -reset reset

synthesis_options -steps synthesizer schematic 
synthesis_options -alternative normal 
synthesis_options -priority cost 
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Figure 0-11 Multiplier Constraints

Figure 0-12 and Figure 0-13 are two placement and route examples of the 
multiplier; the first the results of a conventional synthesis tool, and the 
second the results of a synthesis tool with advanced datapath functionality. 
The regularity of this structure makes it an ideal for datapath placement 
and routing. This approach can add significant more control to the 
placement and routing process which reduces the chance of violations due 
to unforeseen large variances in interconnect lengths for each of the bit-
level routes between datapath elements.

Figure 0-12 Multiplier Implementation (Traditional Synthesis)

library -macro SmartBlocks
wire_model 5K_DLM
timing -arrival -rise 0.000000 -fall 0.000000 -g
timing -required -rise 90.000000 -fall 90.000000 -g 
preserve_boundary -tree

synthesis_options -alternative normal 
synthesis_options -priority cost 



Implementation
Figure 0-13 Multiplier Implementation (Datapath Synthesis)

The rest of the TDSP was made up of bus interface logic, instruction 
decode, and instruction execution logic. There were 16 state machines in 
the TDSP. Figure 0-14 is the constraint file for synthesizing the TDSP 
which highlights 5 of the state machines. Sequential state encoding is 
applied to all state machines.
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Figure 0-14 TDSP Constraint File
drive 3 -g
input_maxload 5 -g
output_load 75 -g
timing -required -minrise 3 -maxrise 35 -g
timing -required -minfall 3 -maxfall 35 -g

scope tdsp_core
preserve_boundary -tree
wire_model -tree 10to20K
timing_path reset -disable yes
timing_path mpy_result alu_result -disable yes
clock clk -rise 0 -fall 20 -period 40

scope execute_i
wire_model -tree 0to10K
fsm -block execute_machine  -reset reset -nature asynchronous -edge 1
scope update_ar
wire_model 0to10K
fsm -block update_ar_machine -reset reset -nature asynchronous -edge 1 

scope decode_i
wire_model 0to10K
fsm -block decode_machine  -reset reset -nature asynchronous -edge 1 

scope port_bus_mach
wire_model 0to10K
fsm -block port_bus_machine  -reset reset -nature asynchronous -edge 1 
output_load 100.0 data

scope data_bus_mach
wire_model 0to10K
fsm -block data_bus_machine  -reset reset -nature asynchronous -edge 1 
output_load 100.0 data

scope prog_bus_mach
wire_model 0to10K
fsm -block prog_bus_machine  -reset reset -nature asynchronous -edge 1 
output_load 100.0 data

scope tdsp_core.MPY_INST
maintain -tree

scope tdsp_core.ALU_INST
maintain -tree

synthesis_options -priority cost
delay_params -type max

run_synthesizer
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The TDSP synthesis results are shown in Figure 0-15. Since the block was 
synthesized maintaining the inherent hierarchy of the TDSP, the results are 
detailed for each sub-block of the TDSP. During floorplanning regions 
were automatically created for the ALU and multiplier by the datapath tool 
which optimally ordered and placed the datapath elements. The remaining 
portion of the TDSP was placed within the block boundary constraints 
along with the ALU and multiplier previously placed by the datapath 
placer. The resulting physical placement is shown in Figure 0-16.

Figure 0-15 TDSP Synthesis Summary
Timing
Maximum Clock Frequency =  33 MHz 
Longest Path Delay =  30 ns
Minimum Slack Time = 12 ns

Cost
1303940.000 um2

Module WireModel CellCount 
data_bus_mach 0to10K              189
decode_i               0to10K               170
prog_bus_mach 0to10K               192
update_ar              0to10K               311
execute_i             0to10K              938
accum_stat             0to10K               24
imp_cadd32_3           0to10K               237
um32x32_0              0to10K               1461
mult_32                0to10K               1672
alu_32                0to10K              868
port_bus_mach         0to10K               180
tdsp_core              10to20K              4888
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Figure 0-16 TDSP Placement
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DFT Logic Design and Verification
DFT Logic Design and Verification

Once the DFT planning phase is complete, design and verification of the 
DFT logic can be done. DFT logic design and verification occur 
concurrently with design and verification of the normal system log. It is 
important to realize that any DFT logic which is added to the design to 
support test will require logic and timing verification—just as with the 
regular system logic—in order to assure that the DFT logic is functionally 
correct and has accurate timing.

Block-Level DFT 
Synthesis and 
Insertion

The flow in Figure 0-17 is used for each top level physical partition of the 
design. Since test synthesis occurs at this point in the flow, it is desirable 
to determine what the physical scan order of the internal scan chains will 
be. This is so that the gate-level netlist will have the correct connections 
for the final scan chain orders. If the final scan order is not known, it can 
be determined based on physical cell placement of the scan elements and 
then the scan chain order can be stitched back into the netlist.

Figure 0-17 Block-Level Synthesis and Design
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Scan Path and Test 
Function Verification

The flow in Figure 0-17 shows various points where the design can be 
passed either to verification or ATPG test vector generation. Particular 
attention must be paid to verification of proper scan path shifting and 
correct scan path ordering.

Other test functions, for example clock de-gating for test purposes, Iddq 
enable functions, parallel access scan functions, and test access collars 
should also be verified for correct operation. Though not specifically a test 
function, proper operation of the system reset function should also be 
verified, as a reset is often used prior to applying tests and would therefore 
be important to correct test operation on the tester.

Also, any DFT logic that did not go through the synthesis step in Figure 0-
17 should be verified for correct timing. This may typically happen for 
internal scan path structures that were inserted using a cell-level 
substitution of internal state elements. In this case it is important to verify 
that there are no hold violations during scan path shifting. Any hold 
violations on the scan path will mean that the ASICs scan paths can not be 
reliably shifted, and therefore the scan path can not be used for testing or 
debug of the chip.
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Lab Exercise: Design Entry, Simulation, and Synthesis
Lab Exercise: Design Entry, Simulation, and Synthesis

Circuit: Bus Arbiter FSM

1. Code the memory bus arbiter given the module description found 
in the DTMF Design Description section of this manual. 

All data creation and analysis jobs should be done in the work 
directory.

Verilog Module: arb (arb.v)
VHDL Entity/Architecture: arb/rtl (arb.vhd)

Model the bus arbiter as an explicit finite state machine. The state 
encodings are supplied in the following files:

Verilog Include File: ../include/arb.h
VHDL Package: ../include/arb_p.vhd

Note the state encodings have been gray-coded:
ARB_IDLE        : 001
ARB_GRANT_TDSP  : 000
ARB_GRANT_DMA   : 010
ARB_CLEAR       : 011
ARB_DMA_PRI     : 111

The bus arbiter is clocked by a 25 Mhz positive edge triggered clock 
(clk) and is asynchronously reset with an active high reset (reset).
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Figure 0-18 Memory Bus Arbiter State Machine Diagram

Note: Unless otherwise shown, dma_grant and tdsp_grant are 0.

2. Once the design has been entered, verify its synthesizability. A 
script has been supplied to run a synthesizability check:

Verilog: check arb.v
VHDL: check arb.vhd

3. Once the design is synthesizable, simulate it using the supplied 
testfixture and configuration files. This will be a pass/fail test.

Verilog: test_arb_rtl.fs
VHDL: cfg_test_arb_rtl.vhd

4. Once the functionality is verified, synthesize the design. 
Constraints are supplied as well as a script to run batch synthesis. 

Verilog: syn arb.v
VHDL: syn arb.vhd

5. When the synthesis job is complete, copy the resulting verilog 
netlists into the work/lib directory and rename to the appropriate 
naming convention:

GRANT_DMA

IDLE

DMA_PRI

CLEAR

GRANT_TDSP

tdsp_breq = 1dma_breq = 1

tdsp_breq = 1

tdsp_breq = 0dma_breq = 0

dma_breq = 1

dma_breq = 1 tdsp_breq = 1

tdsp_breq != 1 and
dma_breq != 1

dma_grant = 1 tdsp_grant = 1

tdsp_grant = 1
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synruns/arb_rtl.run/syn.v -> lib/arb.vs

Note the Verilog netlist is the data we will move forward to sign-off 
with for both Verilog and VHDL users. 

Turn in the following:

arb.v or arb.vhd

syn.report.p
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Lab Exercise: Functional Verification

Circuit: DTMF Receiver Core System

‰ Simulate the Bus Arbiter FSM you completed in Lab 2 in the 
context of the DTMF receiver system. 

The circuit function is to detect a DTMF signal using Goertzal’s algorithm 
to perform the Discrete Fourier Transform. Consult the DTMF Design 
Description chapter for the circuit description and explanation of the 
Goertzal algorithm. 

Simulation configurations are supplied in the work directory:

Verilog: verilog -f dtmf_recvr_core_test_rtl.fs

VHDL: cv cfg_dtmf_recvr_core_test_rtl.vhd
ev work.dtmf_recvr_core_test_rtl
sv work.dtmf_recvr_core_test_rtl/SIM

The testfixture provided has a built-in pass/fail self-check. To enable this 
self-check, do the following:

Verilog : +define+LAB3 

VHDL    : Use 'etc/lab3.cmd' input file

Run the simulation from the work directory.

Turn in the following:

Simulation log file
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Lab Exercise: Verification Strategies (Pattern Capture)

Circuit: Bus Arbiter FSM

‰ Update the testfixture for the bus arbiter for unit testing. 

The testfixture should write out a vector file to be used for pattern 
comparison with gate level simulation results.

Verilog users can use the $incpattern_write function. VHDL users will 
have to code the appropriate functionality into the testfixture. The 
testfixtures are in the work directory:

Verilog Module: arb_test
Verilog Source File: arb_test.v
VHDL Entity/Architecture: arb_test/behavioral
VHDL Source File: arb_test.vhd

The testfixture source files should be source controlled. Again use the 
simulation configurations to run the simulation.

Verilog: arb_test_rtl.fs
VHDL: cfg_arb_test_rtl.vhd

Figure 0-19 Pattern Capture

Turn in the following:

arb_test.v[hd]

ARB_TEST

ARB(RTL)

SIMULATOR
PATTERNS
(RTL)
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Lab Exercise: Verification Strategies (Pattern Compare)

Circuit: Bus Arbiter FSM

‰ Verify the synthesized netlist for the arb block by reading in the 
patterns from the RTL simulation (Lab 4) and comparing them 
with the results from the gate level simulation.

Update the testfixture from Lab 4 to do this. Verilog users can use the 
$incpattern_read, $strobe, and $strobe_compare commands for this. 
VHDL users will have to code the appropriate functionality for this. The 
only requirement is to be able to show simulation differences, the signals 
they apply to, and the time when the differences occurred.

Create a simulation configuration to run the simulation using the 
synthesized netlist from the previous lab.

Verilog: arb_test_gate.fs
VHDL: cfg_arb_test_gate.vhd

Figure 0-20 Pattern Compare

Turn in the following:

arb_test.v[hd]

ARB_TEST

ARB(GATES)

SIMULATOR
PATTERNS
(GATES)

PATTERNS
(RTL)

COMPARE
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Lab Exercise: Hardware/Firmware Co-Verification

Circuit: DTMF Receiver System

The purpose of this lab is to introduce you to the tools and techniques 
needed to debug HDL within the target simulator environment. To this end 
you will be creating a small TDSP assembly language program to test the 
Data Scratch Memory that is part of the DTMF Receiver System

Figure 0-21 DTMF Receiver System Block Diagram

The test program you create will write an incrementing pattern to 
successive RAM locations until the Data Scratch Memory is filled. For 
convenience, the pattern value is the physical RAM address for the 
location currently being written to. Once the RAM is filled, your program 
reads from the memory and compares the value found with the physical 
RAM address your program is accessing. If an error occurs, the program 
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exits, leaving the erroneous address in the accumulator. If the test passes, 
the accumulator value should be 0x0000 upon the program exiting.

Sounds easy enough. How about a couple of hints

Hint 1: Reference the DTMF Design Description chapter for a 
complete listing of the TDSP instruction set, instruction execution, and 
addressing modes.

Hint 2: Upon reset, the TDSP starts reading the program ROM at 
location 0x0000.

Hint 3: The TDSP direct addressing mode only includes 7 bits in the 
immediate address portion of the instruction. To address locations higher 
that 0x007f, you must load the “data page pointer.”

Hint 4: Remember the DTMF Receiver memory map that is described 
in the DTMF Design Description chapter? The Data Scratch Memory is 
located at locations 0x0080 - 0x00df in the data memory space.

Hint 5: Your memory should look something like the following if your 
program is working properly

Figure 0-22 RAM Contents

You may wish to enable the RAM dumping code (review the source code 
for one of the RAM modules) to assist in viewing the memory contents.

0x0080

0x0081

0x0082

0x0083

0x00df

0x00de

0x0080

0x0081

0x0082

0x0083

0x00df

0x00de

Address RAM
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Hint 6: Take a look at the BANZ instruction. The instruction can be 
thought of as a hardware for loop.

Hint 7: Upon exiting your program, have the TDSP enter a tight loop 
that you can easily trace and set break-points for the simulator.

Hint 8: (verilog users) Review and define as necessary any of the 
define options that are available at the head of the testfixture—some of 
these will be useful to you in completing this lab successfully. Also, review 
the testfixture, RAM, and ROM models for memory content dump routines 
and how to initiate the dump process.

Hint 9: (vhdl users) Review the RAM and ROM models for content 
dump routines and how to initiate the dump process.
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Enough hints for now. Here’s a procedure to follow when working through 
the lab exercise:

1. Create the simulation work directory

dtmf_proj/work/ramtest

2. Create a simulation configuration file. 

You need to include the dtmf_recvr_core_test testfixture and the 
dtmf_recvr_core_rtl configuration. Note that you will be making some 
changes to the testfixture, so fetch a local copy to your run directory 
that you can edit.

3. Create a local copy of the current opcodes in your run directory by 
using the program getop. 

You should invoke getop as follows (note that you will be referencing 
the verilog source data for this operation):

getop <vlog_path>/src/*. <vlog_path>/include/*.h

getop can be found in the dtmf_proj/bin directory.

4. Create your source assembly code. 

This file should be called rom.asm. You’ll assemble your source code 
using tdspasm. Invoke the assembler as follows:

dtmf_proj/bin/tdspasm rom.asm

This operation will produce:
rom.lst: the composite listing

rom.sym: the symbol cross-listing

rom.obj: the machine object

Please review these files to familiarize yourself with their contents.

5. The ROM used in the DTMF Receiver looks for the file rom.txt in 
the run directory for initialization data. 

Since the assembler file rom.obj contains initialization data, make a 
UNIX file link to rom.obj and call it rom.txt.

6. At this point you may wish to invoke the simulation environment 
as a sanity check to make sure your configuration is correct and 
the generated ROM file can be opened.
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7. (verilog users) Modify the dtmf_recvr_core_test testfixture and add 
some code to monitor the TDSP address bus and display the 
contents of the accumulator when your program exits and enters 
the tight loop.

You can use the hierarchy browser to find the TDSP accumulator so 
that you can reference it via your testfixture display routine.

8. (vhdl users) Use the variable browser to find and trace the 
accumulator during simulation.

9. (both) Define a breakpoint on the address bus when your program 
exits and enters its tight loop to halt the simulation run.

10. Assuming all went well when you fired up the simulation 
environment, open a waveform viewing window to trace the TDSP 
program and data memory address, data, read and write strobes. 

11. Resume the simulation and check that your program is operating 
as planned.
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Lab Exercise: Design Capture 

Circuit: DMA Controller FSM

‰ Code the DMA controller given the description in the DTMF 
Design Description chapter. All data should be created in the work 
directory.

Verilog Module: dma (dma.v)
VHDL Entity/Architecture: dma/rtl (dma.vhd)

Model the DMA controller as an implicit finite state machine. The DMA 
controller is clocked by a 25 Mhz positive edge triggered clock and the 
reset is asynchronous and active high. Upon reset all outputs of the DMA 
controller are cleared (0). When reset is inactive, the state machine shown 
in 
Figure 0-23 is executed, beginning in the IDLE state.

Figure 0-23 DMA Controller State Machine Diagram

IDLE

breq = 1

read_spi = 1

write = 1

write = 0

top_buf_flag = 1

a = a + 1

bus_req = 0

top_buf_flag = 0

as = 1

read_spi = 0
as = 0

a[7] = 0a[7] = 1

dflag = 1

bus_grant = 1

bus_grant = 0
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Note: Unless otherwise shown, all outputs remain hold their value during 
state transitions.

Turn in the following:

dma.v

simulation log file
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Lab Exercise: Initial Synthesis 

Circuit: DMA Controller FSM

1. Synthesize the DMA controller circuit with no constraints. 

A script has been provided to run the synthesis job. To invoke the 
synthesis job, type 

verilog : syn dma.v
vhdl : syn dma.vhd

2. Examine the results in the run directory, and then answer the 
listed questions.

What is the longest path? 

What is the maximum operating frequency? 

What is the minimum slack time? 

What is the total cost? 

What is the width of the state register? 

How many registers are there in the design? 

Are there any loading violations? 

Are there any timing violations? 

What is the maximum load seen at the input? Can this be easily 
determined?

What is the minimum load that can be driven? Can this be easily 
determined?

Table 4-1 Synthesis Report Files
syn.v, syn.vhd Netlist File
syn.report.t Timing Report
syn.report.p Cost Report
syn.report.maxfanout Loading Violation Report
syn.report.stats Netlist Statistics
syn.report.ffcstr Flip-Flop Constraint Report
syn.report.int.clock Internal Clock Report
syn.report.summary Summary Report
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Lab Exercise: Delay Calculation

‰ Calculate the maximum fall delay for I1 in the following circuit. 

Use the linear delay equation (3.1.2) on page 6-12 of An Approach to Top 
Down Design. Consult the library file for the characterization data for the 
NA210 cell (all instances are NA210’s). Use the 5K_TLM wire model for 
wire load estimates.

RW = __________________________________

CW = __________________________________

DW = __________________________________

CL = __________________________________

DL = __________________________________

DS = ___________________________________

DI = ___________________________________

DT = ____ + ____ + ____ + ____ = _______

I2

I3

I4

I5

I1

I6
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Lab Exercise: Constraint Derivation

Exercise: TDSP Constraint Derivation
Assume that the TDSP is placed and routed as a 10K hard macro. All the 
blocks in the design are less than 2K equivalent gates. Each module was 
synthesized separately and the following loading constraints were used:

input_maxload 5 -g
output_load 10 -g
wire_model -tree 2K_TLM

Figure 0-24 Block Level Synthesis Constraints

Consult the library data for any necessary data.

‰ Answer the following questions (assume all gate inputs are 1 sL):

How many fanouts are allowed for each input port? 

What will be the largest load seen at any input port?

What is the maximum load that can be driven by any output port?

5 sL 10 sL

2K_TLM
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Assume that the TDSP core was then run through synthesis at that gate 
level for pre-layout drive optimization. The following constraints were 
used:

preserve_boundary -tree -alternative driveopt
input_maxload 10 -g
output_load 128 -g
wire_model -tree 10K_TLM

Figure 0-25 Core Level Synthesis Constraints

Consult the library data for any necessary data.

‰ Answer the following questions (assume all gate inputs are 1 sL):

How many fanouts are allowed for block interconnect (connections from 
one block to another) before a buffer is placed? 

What will the load be after adding the buffer?

What will be the largest capacitance seen by any internal module output 
port? 

5 sL 5 sL

5 sL

?

128 sL

10 sL

10K_TLM
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Circuit: DMA Controller FSM

1. Given the circuit description, the synthesis library and the 
estimated size of the design, derive a set of global constraints. 

These constraints should include all necessary boundary conditions 
(timing, loading, and resistance), wire models, library parameters, and 
clocking information.

Clock: 25 MHz
Reset: Active High
Arrival Times: 2 ns (minimum) 5 ns (maximum)
Required Times: 1 ns (minimum) 10 ns (maximum)
Wire Model: 5K_TLM

2. Enter the constraints in the work/etc/dma.cst file. 

3. Synthesize the design using these constraints. 

The syn script can be used; it automatically looks for the constraints in 
the dma.cst file.

What is the delay of the longest path? 

What are the endpoints of this path?

What is the maximum operating frequency? 

What is the minimum slack time? 

What is the total cost? 

What is the width of the state register? 

How many registers are there in the design? 

Are there any loading violations? 

Are there any timing violations? 
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Lab Exercise: Timing Analysis 

Circuit: Tiny DSP

The TDSP chip is clocked at 25MHz. It is fully synchronous with no 
internally generated clocks and no transparent latches. Instructions 
requiring the ALU or the multiplier allow 2 clock cycles for the result. 

‰ Use Synergy to perform timing analysis on the design. 

Use a 20K_TLM wire model for the top and a 2K_TLM wire_model for 
each lower level block. Run as many synthesis jobs as it takes to answer 
the following questions:

What is the longest path in the design?

What is the slack time of the design?

What is the maximum operating frequency?

Are there any timing violations?

How many synthesis runs were run?

CLOCK

OPERANDS

RESULTS

Φ4 Φ5 Φ6Φ3 Φ1

40 ns
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Lab Exercise: Optimization Strategies

Circuit: DMA Controller FSM

‰ Synthesize the dma design unit. 

A constraint file is provided in the etc directory. Constraints may be 
added to this file as required. Run as many synthesis jobs as it takes to 
answer the following questions:

What is the smallest implementation?

What is the slack time for this implementation?

What is the fastest implementation?

What is the cost of this implementation?
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Lab Exercise: Resource Sharing

Circuit: Results Character Conversion

The circuit topology for the results_conv block is:

DATA SELECTORADDRESS

F1 F2 F3 F4 F5 F6 F7 F8

GT GT GT GT GT GT GT GT

CHECK TWIST

LOW HIGH

CHARACTER ?

OUT_P1

OUT_P2

LOW HIGH
10-44 A Top-Down Approach To IC Design v1.2



Lab Exercise: Resource Sharing
Both the GT and CHECK TWIST functions contain complex operations.

1. Check the source code and analyze the behavior of this design unit.

Note: The GT (gt_comp) function calls do NOT happen in parallel.

2. Run a synthesizability check.

How many different types of complex operations are there in this design?

What are they? 

How many total complex operations need to be performed?

Can any of the operations be shared?

3. Set up and run a synthesis run (use the SmartBlocks library)

How many complex operations were implemented?

What is the total area?

4. Add the following lines to your command file and re-run synthesis.

operator MINUS -width 16 -opcount 2 -partcount 1
operator MINUS -width 17 -opcount 2 -partcount 1

How many complex operations were implemented?

What is the total area?

What is the difference in slack time?
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Lab Exercise: Macro Libraries

Circuit: DTMF Receiver Core System

‰ Create a macro library that contains a tdsp_core model cell and a 
technology dependent implementation (ti_tdsp_core). 

The library should be called tdsp_macro. The hierarchy of the 
implementation should be maintained during synthesis runs; no drive 
optimization is required.

tdsp_core

ti_tdsp_core

tdsp_macro

Model Cell

Implementation
(Structural)

dtmf_recvr_core

tdsp_core
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Lab Exercise: Test Insertion

Circuit: Bus Arbiter FSM

1. Insert full scan test logic into the bus arbiter module. 

The test ports are defined as follows:

scan_input: scan data input
scan_enable: active high scan enable
scan_output: scan data output

How many elements are in the scan chain? 

What is the default order of the elements?

2. Run test insertion again and reverse the scan chain order:

What is the new order of the elements?

What constraint did you use to do this?
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Chip-Level Assembly Implementation
Overview

Chip assembly is the process of bringing all the gate-level design blocks 
together for functional and timing verification, design rule check, pattern 
generation, and either ASIC vendor sign-off or in-house place and route. It 
is assumed that all design blocks, embedded blocks, and test blocks have 
been implemented (RTL) and in some cases functionally verified. 

Full-chip functional verification is done during this phase of the design 
process. This part of the design process is very compute intensive. 
Therefore, the verification strategy must be well defined and testbenches 
written and in place. Verification of the design will require exhaustive 
simulations at multiple levels of abstraction and therefore automated 
regression techniques should employed as well as network “task 
brokering” to make use of all available resources. 

Figure 11-1 shows the detailed process diagram and Figure 11-2 shows the 
accompanying project schedule (for a commercial ASIC sign-off project).
v1.2 A Top-Down Approach To IC Design 11-1



Overview
Figure 11-1 Chip Assembly and Sign-Off Process Diagram

Logical Chip Assembly

Design Database

Errors?

No

Yes

Timing AnalysisPost Layout SDF File SDF Constraints

Timing OK?
No

Yes

Vector Generation

Gate Level Verification

Technology
Library

High Level Floorplanning

Estimated Parasitics

Simulation
Results

 Drive Optimization

Design Database(A)

Stimulus Vectors

Design Rule Check

Design Database Detailed Floorplanning

DRC Errors?Yes

No

Timing Optimization / Resizing Extracted Parasitics

Functional Verification
Simulation

Results

 Placement and Route

Timing Analysis

Timing Errors?Yes

No

Vector Generation

Tape Out

Timing Analysis

Timing Analysis

Optional
COT Flow
Commercial ASIC ASIC Vendor Sign-Off

Physical Verification
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Figure 11-2 Chip Assembly and ASIC Sign-off Schedule
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Logical Chip Assembly

Figure 11-3 shows the logical hierarchy of the DTMF core. Once the core 
logic assembly is complete, additional test logic (NAND trees, JTAG, etc.) 
can be added to the top-level netlist along with the I/O pads. A level of 
hierarchy should be created for the core as well as for test logic, so they can 
be easily isolated and preserved during drive optimization and resizing 
runs.

Figure 11-3 DTMF Core Logic Hierarchy

Chip-Level DFT 
Synthesis and 
Insertion

At the top level of the design, any DFT structures which are part of the 
chips I/O or are external to other blocks of the design can now be designed 
or automatically generated, and inserted into the netlist. Examples of such 
DFT objects are: HDL macro functions for the boundary scan register 
(BSR) cells, BIST structured such as controllers and LFSRs/MISRs, or an 
access collar around a large core block. If any of the DFT structures are 
inserted as HDL they will, of course, need to go through block level logic 
synthesis. 
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Scan Chains In the case of the DTMF, the scan chains were automatically connected at 
the top level using the synthesis tool. The scan chain input and outputs are 
defined below.

Figure 11-4 Scan Chain I/O Assignments

Figure 11-5 shows the constraints that were used to affect the I/O 
connection and scan chain ordering and Figure 11-6 show the resulting 
scan chain ordering.

Figure 11-5 DFT Constraints

Scan Chain Scan Input Scan Output Scan Enable

1 scan_input_1 scan_output_1 scan_enable

2 scan_input_2 scan_output_2 scan_enable

3 scan_input_3 scan_output_3 scan_enable

dft_number_chains 3
dft_scan_polarity_inv -invert no
dft_donot_scan -scope tdsp_ds_cs

dft_scan_segment 
scan_input_1 
arb 
dma 
results_conv/1 
spi/1 
tdsp_core 
digit_reg 
scan_output_1

dft_scan_segment 
scan_input_2 
results_conv/2 
scan_output_2

dft_scan_segment 
scan_input_3 
spi/2 
scan_output_3
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Figure 11-6 Scan Chain Ordering

RAM BIST Often, RAM BIST structures can be automatically generated according to 
the RAM parameters (e.g., single or multi-ported, RAM address and word 
widths). The BIST control logic can also be automatically generated. 
Whether they are automatically generated, or designed by hand, these test 
structures are typically inserted into the netlist as HDL and connected to 
the RAM block. The HDL can then go through block level synthesis.

Access collars are implemented either as multiplexed logic, which 
multiplexes the I/O of the embedded block to the devices primary I/O pins 
for test, or as a boundary scan ring around the embedded block. Access 
collars may be automatically generated or designed by hand, and may be 
done using HDL or special cells (e.g., in the case of a boundary scan 
collar).

In the case of the DTMF, a RAMBIST tool was used to automatically 
generate test access collars and BIST controllers for the two RAMs. These 
modules were then synthesized using constraints that were also generated 
by the RAMBIST tool. Figure 11-7 below shows the design hierarchy of 
the RAM block. Note each RAM is instantiated in a BIST access collar 
(bist_m1 and bist_m2) and the BIST control logic is instantiated as a 
separate logical block (bist_cntl).

ARB DMA

SPI

TDSP

RESULT_CONV

DIGIT_REG
1

3

2
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Figure 11-7 RAM Logical Hierarchy

Boundary Scan and 
TAP Controller

For boundary scan structures, netlist insertion of the Boundary Scan 
Register (BSR) logic for each I/O cell and the TAP controller can be 
performed. This includes connection of the added nets between the BSR 
logic, I/O cells, TAP controller, and the other top-level blocks of the 
design.

Some ASIC vendors provide hard-macro I/O cells in their libraries, which 
contain the necessary 1149.1 BSR logic in the I/O cell. This is the desired 
implementation for boundary scan as it generally achieves the best area 
and timing performance. The alternative, when such hard-macro I/O cells 
are not available, is to insert soft macros (HDL that can later be 
synthesized) for the BSR logic.

In the case of the DTMF, no boundary scan was required.

Once all of the DFT structures that need to be inserted at the top level of 
the design are completed, chip-level floorplanning can be done and final 
budgets set for constraints to logic synthesis. The next step is block level 
design and synthesis of the test structures. Here, any DFT structures which 
are internal to the top level blocks, for example internal scan paths, are 
inserted.
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Functional Verification

Functional verification of the system at the RTL level should occur as soon 
as possible. Testbenches and stub models can be written to model 
peripheral system behavior so that core modules can be verified early in 
the design process. 

In the case of the DTMF system, the DSP was simulated at the block level 
so that the full instruction set could be verified. This was discussed in 
Chapter 10, “Block-Level Implementation,”. Chip level functional 
simulation was used to verify that the system bus interfaces and system 
peripherals were functioning properly and to debug the system firmware 
(Goertzel algorithm).

Hardware 
Verification

Functional verification of the major design blocks (TDSP, RCC, DMA, 
SPI, and ARB) was performed during block-level implementation. 
Because of this, RTL verification of the DTMF hardware required only 
integration testing of these modules to verify bus interface protocols. This 
saved a significant amount of time as very little debug was required at this 
level of integration. The bulk of the verification effort was in software 
verification. 

Configurations were used to define block design hiearchies. These 
configurations could then be synthesized in which case the resulting netlist 
(hierarchical or flat) would be the gate-level representation of the original 
configuration. For example, Figure 11-8 shows the RTL configuration for 
the tdsp_core.

Figure 11-8 TDSP Core RTL Configuration

tdsp_core_rtl.f
./include/timescale.h
./alu_32.v
./data_bus_mach.v
./decode_i.v
./execute_i.v
./mult_32.v
./port_bus_mach.v
./prog_bus_mach.v
./accum_stat.v
./update_ar.v
./tdsp_core.v
+incdir+./include
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The synthesized netlist is tdsp_core.vs and contains the entire design 
hierarchies for the tdsp_core. Figure show the RTL and gate level 
simulation configurations for simulating the tdsp_core.

Figure 11-9 TDSP Simulation Configurations

The following table shows a complete listing of the DTMF configurations:

Figure 11-10 DTMF Configurations

tdsp_core_test_rtl.fs
+define+rtl+no_trace+turbo+3+twin_turbo
./include/timescale.h
./tdsp_core_test.v
-f ./configs/tdsp_core_rtl.f

tdsp_core_test_gate.fs
+define+gate+no_trace+turbo+3+twin_turbo
./include/timescale.h
./tdsp_core_test.v
./lib/tdsp_core.vs

Configuration File Type Contents

arb_test_rtl.f simulation arb_test.v
arb.v

arb_test_gate.f simulation arb_test.v
lib/arb.vs

dma_test_rtl.f simulation dma_test.v
dma.v

dma_test_gate.f simulation dma_test.v
lib/dma.vs

spi_test_rtl.f simulation spi_test.v
spi.v

spi_test_gate.f simulation spi_test.v
lib/spi.vs

results_conv_test_rtl.f simulation results_conv_test.v
results_conv.v

resutls_conv_test_gate.f simulation results_conv_test.v
lib/results_conv.vs
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tdsp_core_rtl.f design ./alu_32.v
./data_bus_mach.v
./decode_i.v
./execute_i.v
./mult_32.v
./port_bus_mach.v
./prog_bus_mach.v
./accum_stat.v
./update_ar.v
./tdsp_core.v

tdsp_core_test_rtl.f simulation -f configs/tdsp_core_rtl.f
test_tdsp_core.v

tdsp_core_test_gate.f simulation lib/tdsp_core.vs
test_tdsp_core.v

rams_rtl.f design ram_128x16.v
ram_256x16.v
rams.v

rams_gate.f design ram_128x16.v
ram_256x16.v
lib/bist_cntl.vs
lib/bist_m1.vs
lib/bist_m2.vs
lib/rams.vs

dtmf_recvr_core_rtl.f design -f configs/tdsp_rtl.f
-f configs/rams_rtl.f
arb.v
spi.v
dma.v
digit_reg.v
data_sample_mux.v
results_conv.v
tdsp_ds_cs.v
rom_512x16.v
ulaw_lin_conv.v
dtmf_recvr_core.v

Configuration File Type Contents
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Software Verification The Goertzel algorithm, modeled at the behavioral level during the 
high-level system design phase, now needs to be modeled at the assembly 
code level. Verification of the algorithm was done by loading the program 
in the ROM and loading linear PCM data samples in the data sample 
memory. A PCM generator was written in ‘C’ so that the PCM data (linear 
and ulaw compressed) could be generated easily. This saved significant 
simulation cycles because the serial/parallel interface and the ulaw to 
linear conversion module did not need to be simulated. Figure shows a 
portion of the DTMF testfixture with compiler directive to conditionally 
compile the serial data input versus direct memory load. Note the different 
hierarchical paths to the RAM for RTL and gate level (with BIST logic).

dtmf_recvr_core_gate.f design -f configs/tdsp_gate.f
-f configs/rams_gate.f
lib/tdsp.v
lib/arb.v
lib/spi.v
lib/dma.v
lib/digit_reg.v
lib/data_sample_mux.v
lib/results_conv.v
lib/tdsp_ds_cs.v
lib/rom_512x16.v
lib/ulaw_lin_conv.v
lib/dtmf_recvr_core.vs
-v lib/stdCell.v

dtmf_recvr_core_test_rtl.f simulation -f configs/dtmf_recvr_core_rtl.f
dtmf_recvr_core_test.v

dtmf_recvr_core_test_gate.f simulation -f configs/dtmf_recvr_core_rtl.f
dtmf_recvr_core_test.v

Configuration File Type Contents
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Functional Verification
Figure 11-11 DTMF Testfixture Code Fragment

An assembler was also written which output the program codes in 
memory-loaded verilog format. Figure 11-12 shows a portion of the 
Goertzel algorithm modeled in assembly. 

`ifdef INIT_SAMPLE_RAM
`ifdef RTL
defparam test.top.RAMS_INST.DSRAM.initfile = "etc/pcm256.txt" ;
`endif
`ifdef GATE
defparam test.top.RAMS_INST.M1.M1.initfile = "etc/pcm256.txt" ;
`endif
`endif

/*
 * generate spi interface, data to be shifted out resides in "signalMem"

 */
`ifdef ENABLE_SPI 
always

    begin
    #1000 spi_fs = 1'b1 ;
    #1000 spi_fs = 1'b0 ;
    j = 7 ;
    spi_data = ulawPcm[j] ;
    for (i = 0 ; i <= 7 ; i = i + 1)
        begin
        #1000 spi_clk = 1'b1 ;
        #1000 spi_clk = 1'b0 ;
        if (i <= 6)
            j = j - 1 ;
        spi_data = ulawPcm[j] ;
        end
    signalAddress = signalAddress + 1 ;
    if (signalAddress == signalSize)
        signalAddress = 0 ;
    #107000;
    end

`endif 
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Chip-Level Assembly Implementation
Figure 11-12 Goertzel Algorithm Fragment Modeled in Assembly
;
; **** dtmf dft starts here
;
dfst:
;
; get scale factor
;

lac d_scale
sacl scale

;
; zero delay elements
;
ddz:    zac

lark    ar1,dl_len      ; using all 16 delay elements
lark    ar0,(dla1+base_page1) ; start with dla1

ddzl:   sacl    *+,ar1
banz    ddzl,*-,ar0

;
; load ar0 with agc count

lar             ar0,agc_cnt
sar             ar0,agc_ptr

;
; load ar0 with data sample memory pointer

lark    ar0,(ds_ptr+base_page0) ; using all 16 delay elements 
;
; load ar1 with transform length

lark    ar1,xform_len   ; start with dla1
;
; dft loop, index here goes from 0-(N-2)
;
ddftl:  lac     

sar     *+,0,ar1ar0,frm_ptread sample
sar             ar1,len_ptr
sacl    xk ; move to xk

;
; this calculates the inner loop for 697hz
; tdsp difference equation:
; dla0 = xk*scale + 2*recf1*dla1 - dla2
;
; actual difference equation:
; d(n) = x(n) + 2*cos(2*pi*k/N)*d(n-1) - d(n-2)

apac    recf1
apac
sach    dla1,15 
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Drive Optimization
Drive Optimization

Once the logical chip assembly is complete, a synthesis timing report for 
the entire chip (including pads) should be run to uncover any timing or 
loading issues. If there are any violations, a drive optimization run can be 
done to resolve them. A wire model for the top level should be used for 
proper wire load estimation. This wire model should be selected based on 
the “size” of the chip not the gate count of the design. Ideally, a custom 
wire model should be generated for each placement region by the 
floorplanning tool. This was done for the DTMF; two wire models were 
generated (TDSP_WIRE and RCC_WIRE). Design modules that do not 
have timing or loading problems should be preserved. Also, map without 
the strongest buffer in the library. This will force buffer trees to get built 
with buffers that can be “upsized” later when wire load data is 
back-annotated.

Figure 11-13 and Figure 11-14 show an example of block interconnect 
before and after drive optimization. The inserted buffers are a result of 
loading estimated based on statistical wire models (generated during high 
level floorplanning) and the pin capacitances for each destination. Figure 
11-17 shows the results of resizing these buffers based on actual 
back-annotated wire parasitics.

Figure 11-13 Core Level Block Interconnect

Logical block interconnect
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Chip-Level Assembly Implementation
Figure 11-14 Buffered Interconnect

If timing requirements are not met at the chip level, some or all of the 
design blocks may need to pass through synthesis again with updated  
constraints. The design hierarchy for certain modules may need to be to  
flattened to meet design specifications. This process will, however, alter 
the netlist and require a new physical hierarchy to be generated.

Figure 11-15 shows the constraints for the final synthesis pass. These 
constraints are similar to the previous passes, expect that the wire model 
selected is based on the expected chip die size, and Synergy is run in drive 
optimization mode. 

Upsized during drive optimization

1x

1x
v1.2 A Top-Down Approach To IC Design 11-15



Drive Optimization
Figure 11-15 Drive Optimization Constraints

wire_model FULL_CHIP

clock clk -rise 0.000000 -fall 25.000000 -period 50.000000

timing -required -rise 40.000000 -g 
timing -required -fall 40.000000 -g

preserve_boundary -tree tdsp -alternative resizing 
preserve_boundary -tree results_conv -alternative resizing 
preserve_boundary -tree dma -alternative driveopt 
preserve_boundary -tree spi -alternative driveopt 
preserve_boundary -tree tdsp_ds_cs -alternative driveopt
preserve_boundary -tree data_sample_mux -alternative driveopt
preserve_boundary -tree digit_reg -alternative driveopt 
preserve_boundary -tree ulaw_lin_conv -alternative driveopt
 
maintain -tree rams
maintain -tree rom_512x16

scope tdsp
wire_model TDSP_WIRE

scope results_conv
wire_model RCC_WIRE 

synthesis_options -steps synthesizer schematic  
synthesis_options -alternative driveopt 
synthesis_options -priority timing 
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Chip-Level Assembly Implementation
Gate Level Verification

Mixed-level simulation allows full chip simulation to occur earlier in the 
design process. As the design blocks are completed, their gate level 
implementations are included in the simulation and verified with the rest 
of the design. By incrementally integrating completed design blocks into 
the full chip simulation, integration problems can be detected at an early 
stage. Once all the design blocks are completed, a full chip gate level 
simulation must be performed.

The full chip gate-level simulation results should be compared with the 
RTL simulation results. If problems are detected, they can be isolated 
through interactive mixed-level simulation. If these problems are isolated 
and resolved quickly, they can be rectified without significant impact to 
the full chip verification process. An automated regression simulation 
process to verify the design changes and a synthesis “make” utility to 
update the gate level database with the design/constraint changes are 
imperative to this process.

Once the design has been fully verified, delays calculated from estimated 
wiring parasitics can be annotated into the gate-level simulation to begin 
timing verification.
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Detailed Floorplanning
Detailed Floorplanning

Before delay estimation and timing verification, it is useful to have a 
detailed floorplan for the overall design. Some vendor tools include the 
floorplanning job in the delay estimator and design rule checking tools. 
This leads to much more accurate delay and load prediction. At this point, 
I/O location should also be known and included as part of the floorplan. If 
the placement and routing is being done through a customer-owned tooling 
environment (COT) an initial placement should be done at this point. For 
the DTMF, all physical design was done COT.

A hierarchical approach can be used for designs where reuse is important, 
designs that lend themselves to physical partitioning or are of a size that 
requires it. In this case, each block would be placed and routed separately, 
an abstract generated for the block and then the design would be routed at 
the top level using a block routing tool.

It was determined that only two hierarchical design blocks should be 
created for the DSP (containing the multiplier and the ALU) and the results 
converter for design reuse requirements. Figure 11-16 shows the resulting 
physical design hierarchy. These blocks were implemented and discussed 
in Chapter 10, “Block-Level Implementation,”. 

Figure 11-16 DTMF Physical Hierarchy
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Chip-Level Assembly Implementation
Timing Optimization / Resizing

Once the design has been run through the vendor floorplanning and/or  
placement tool, wire load information can be back-annotated into Synergy  
for timing optimization and final design rule check. 

First run Synergy with the timing report alternative:
synthesis_options -alternative presynthesis

This will generate a full set of synthesis reports and uncover any remaining  
timing or loading issues. If problems exist, then isolate the blocks that have  
the problems and run the design back through Synergy in either drive 
optimization or resizing mode.

If the vendor has an ECO capability, then use the resizing mode so the  
netlist topology will not change. Constrain the synthesis tools to only work 
on the problem areas by hierarchy management constraints. 

Figure 11-17 Buffer Resizing

Upsized due to actual

2x

1x

wire parasitics
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Static Timing Analysis
Static Timing Analysis

For the receiver design, a large portion of the timing analysis at both the 
block and chip level occurs within the synthesis tools. The synthesis tool 
can work with statistical wire models, back-annotated wire loads (SPF), or 
back-annotated delays (SDF). Figure 11-18 indicates the longest path 
through the DTMF as reported by the synthesis tool.

Figure 11-18 DTMF Longest Path

As indicated, the longest path passes through the multiplier and is 
completely contained within the TDSP. The actual delay is 67.94 ns with 
a single cycle slack of -28.54ns. However, the multiplier is a two cycle path 
(the operands are registered in phi_3 and the results is registered in phi_5) 
and therefore needs to be checked against a two-cycle clock constraint. 
The two cycle slack time would therefore be +11.46ns. Because of this, the 
synthesis constraints were modified and the timing analysis performed 
again. During this run, both the multiplier output and the ALU output were 
disabled so that only the single cycle paths would be analyzed. Figure 
11-19 shows the full path trace of the longest multiplier path.

CLK

DECODE MULTIPLY EXECUTE

TDSP
Φ3 Φ5
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Chip-Level Assembly Implementation
Figure 11-19 DTMF Longest Path (Detailed)
Total Inc FO Load Cell Instance
R( 0.00)   0.00 <-- clock      FD4QS(CP) TDSP.DECODE.mod350852
F(  2.72) 2.72   12    0.30   FD4QS(CP=>Q) TDSP.DECODE.mod350852
R(  3.77) 1.05    3    0.08   IVP(A=>Z)           TDSP.mod498021
F(  4.42) 0.65    2    0.08   ND2P(A=>Z)          TDSP.mod488461
R(  5.33) 0.91    3    0.06   IV4(A=>Z)           TDSP.mod501437
F(  6.13) 0.80    1    0.06   ND2(A=>Z)           TDSP.mod488418
R(  7.20) 1.07   11    0.24   IV4(A=>Z)           TDSP.mod504901
F(  8.05) 0.85    7    0.19   ND2P(A=>Z)          TDSP.mod488466
R(  8.94) 0.89 2    0.04   IV4(A=>Z)           TDSP.mod501715
F(  9.90) 0.96    1    0.02 AO2(A=>Z)           TDSP.mod509179
R( 12.10) 2.20    7    0.16 AO3(D=>Z)           TDSP.mod493251(op_b[2])
R( 13.50) 1.41    3    0.06 OR3P(A=>Z)          TDSP.MPY_32.mod333422
R( 15.22) 1.71    3    0.06 OR3P(C=>Z)          TDSP.MPY_32.mod333434
R( 16.93) 1.72    3    0.06 OR3P(C=>Z)          TDSP.MPY_32.mod333446
R( 18.65) 1.72    3    0.06 OR3P(C=>Z)          TDSP.MPY_32.mod333458
R( 20.37) 1.71    3    0.06 OR3P(C=>Z)          TDSP.MPY_32.mod333470
F( 21.62) 1.25    4    0.10 AO7(A=>Z)           TDSP.MPY_32.mod332511
R( 22.75) 1.13    1    0.02 ND2P(A=>Z)          TDSP.MPY_32.mod332607
F( 23.65) 0.90    4    0.09 AO37(D=>Z)          TDSP.MPY_32.mod332442
R( 25.28) 1.63   20    0.42 IVP(A=>Z)           TDSP.MPY_32.mod007140
R( 26.97) 1.69    2   0.04 OR3P(C=>Z)          TDSP.MPY_32.mod007140
F( 29.28) 2.32   16    0.34 AO34(D=>Z)          TDSP.MPY_32.mod006374
R( 30.71) 1.43   2    0.05 AO2(D=>Z)           TDSP.MPY_32.mod008392
F( 31.46) 0.75    2    0.05 IVP(A=>Z)           TDSP.MPY_32.mod008394
F( 33.72) 2.26    3    0.07 EO3(C=>Z)           TDSP.MPY_32.mod006928
R( 35.43) 1.71    3    0.07 EN3P(A=>Z)          TDSP.MPY_32.mod006045
F( 37.88) 2.45    3    0.07 EO3(B=>Z)           TDSP.MPY_32.mod004633
R( 40.24) 2.36    2    0.04 EN3(B=>Z)           TDSP.MPY_32.mod004659
R( 41.78) 1.54 4    0.10 OR2(B=>Z) TDSP.MPY_32.mod001302
F( 42.53) 0.75    1    0.04 ND3(A=>Z)           TDSP.MPY_32.mod001312
R( 44.41) 1.88    5 0.13   ND4P(C=>Z)          TDSP.MPY_32.mod001370
F( 45.06) 0.65    1 0.05   ND4P(A=>Z)          TDSP.MPY_32.mod001375
R( 46.72) 1.67    5 0.13   ND4P(A=>Z)          TDSP.MPY_32.mod001380
F( 47.37) 0.65    1    0.05   ND4P(A=>Z)          TDSP.MPY_32.mod001385
R( 49.04) 1.67    5 0.13 ND4P(A=>Z)          TDSP.MPY_32.mod001390
F( 49.68) 0.65    1    0.05   ND4P(A=>Z)          TDSP.MPY_32.mod001395
R( 51.35) 1.67    5 0.13 ND4P(A=>Z) TDSP.MPY_32.mod001400
F( 51.99) 0.65    1 0.05 ND4P(A=>Z)          TDSP.MPY_32.mod001405
R( 53.66) 1.67    6    0.13   ND4P(A=>Z)          TDSP.MPY_32.mod001410
F( 54.09) 0.43    1    0.04 ND3(C=>Z)           TDSP.MPY_32.mod001482
R( 55.40) 1.30    1 0.04 ND3P(A=>Z)          TDSP.MPY_32.mod001485
R( 57.15) 1.76    3    0.06 EOP(B=>Z)           TDSP.MPY_32.mod000933
R( 58.84) 1.69    2    0.04   OR3P(C=>Z)          TDSP.MPY_32.mod333698
R( 60.26)   1.42    3    0.06   OR2(B=>Z)           TDSP.MPY_32.mod332491
R( 62.95)   1.00    1    0.02   AO32(D=>Z)          TDSP.MPY_32.mod336006
F( 64.49)   1.53    1   0.06   AO6(C=>Z)           TDSP.MPY_32.mod336050
R( 65.35)   0.87    1    0.02   IV4(A=>Z)           TDSP.MPY_32.mod336052
F( 66.53)   1.18    1    0.03   AO31(B=>Z)          TDSP.EXECUTE.mod439211
R( 67.54)   1.01    1    0.06   IVP(A=>Z)           TDSP.EXE-
CUTE.mod439213(mpy_result[29])
R( 67.54)   0.00               FD10Q(D)            TDSP.EXECUTE.mod430041
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Static Timing Analysis
The actual worst case (critical) path is the address decode of the results 
character converter memory space during indirect addressing mode.  
Figure 11-20 shows this path.

Figure 11-20 Actual Critical Path

Figure 11-21 shows the full timing report for this path. The critical path 
originates in the instruction execution module (EXECUTE) within the 
TDSP and ends in the results character converter module (RCC). The slack 
time for this path is -9.00 ns. This path actually generates the internal 
t_write_rcc clock for the eight spectral component registers when an 
address in the results converter is decoded during an indirect write 
operation. The following alternatives may be utilized to improve this path:

n Modify the RTL and re-synthesize.

n Modify the constraints and re-synthesize from the RTL level.

n Modify the constraints and perform timing optimization at the 
gate-level.

For the DTMF, it was determined that gate-level timing optimization 
would be performed first to see how if the critical path timing could be 
improved; RTL synthesis would be re-run only if necessary.

CLK

EXECUTE TDSP_DS_CS RESULT_CONV

DTMF_RECVR_CORE

DATA_BUS

t_addr[7]arp t_write_rcc
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Chip-Level Assembly Implementation
Figure 11-21 DTMF Critical Timing Path

Figure 11-22 shows the results of the structural re-optimization.Both 
pessimistic timing numbers (worst case process corner) and wire models 
were utilized during this run; a positive slack timing margin was our goal. 
Indeed the slack time was increased from -9.00 ns to 0.50 ns. At this point 
the logical netlist passes timing analysis as is ready for detailed 
floorplanning and placement.

Total Inc FO LoadCell Instance(net=>net)
R(  0.00)   0.00 <-- clock      FD2Q(CP) 
TDSP_INST.EXECUTE_INST.UPDATE_AR_INST.mod278259(clk)
R(  2.94)   2.94 11 0.34   FD2Q(CP=>Q)
TDSP_INST.EXECUTE_INST.UPDATE_AR_INST.mod278259(arp)
F(  4.39)   1.45 5 0.12   MUX21(S=>Z)TDSP_INST.mod488155
F(  5.89)   1.50    3 0.08   MUX21(B=>Z)TDSP_INST.mod488452
R(  7.88)   1.99    3 0.14   EOP(B=>Z) TDSP_INST.mod488079(addrs_in[0])
F(  8.49)   0.61    1 0.02   V4(A=>Z)           TDSP_INST.mod504319
R( 10.31)   1.82    3 0.09   ND4(A=>Z) TDSP_INST.mod491167
F( 11.06)  0.76    2 0.06   IVP(A=>Z) TDSP_INST.mod506987
R( 12.44)   1.37    2 0.06   ND2(A=>Z) TDSP_INST.mod488479
F( 13.16)  0.73    1 0.04   IVP(A=>Z) TDSP_INST.mod501117
R( 14.55) 1.39    3 0.07   ND3P(A=>Z) TDSP_INST.mod491271
F( 16.03) 1.48    1 0.02   EO(A=>Z) TDSP_INST.mod500419
R( 17.58) 1.55    2 0.08   AO4(C=>Z) TDSP_INST.mod488051(addrs_in[6])
R( 19.00) 1.42    1 0.03   OR2P(B=>Z) TDSP_INST.mod488510
R( 20.48) 1.48    1 0.02   EO(B=>Z) TDSP_INST.mod504439
F( 21.69) 1.21    1 0.06   AO4(A=>Z) TDSP_INST.mod488365(addrs_in[7])
R( 22.65) 0.96 1 0.12   IV4(A=>Z) TDSP_INST.DATA_BUS_MACH_INST.mod320584
F( 23.28) 0.63 2 0.16   IV8(A=>Z) 
TDSP_INST.DATA_BUS_MACH_INST.mod320582(t_addrs[7])
R( 24.42) 1.14 1    0.03   ND2P(A=>Z) TDSP_DS_CS_INST.mod002340
R( 25.74) 1.32 1 0.03   BF2T16(A=>Z) TDSP_DS_CS_INST.mod002965
R( 26.82) 1.08 3 0.18   BF2T8(A=>Z) TDSP_DS_CS_INST.mod002957
F( 27.74) 0.92 1 0.02   NR4P(A=>Z) TDSP_DS_CS_INST.mod002306(t_write_rcc_a)
F( 29.09) 1.35 1 0.02   MUX21(A=>Z) mod006321(t_write_rcc)
F( 30.53) 1.44 1 0.22   BF1T2(A=>Z) RESULTS_CONV_INST.mod823513
R( 32.36) 1.83 129 3.45   IV16(A=>Z) RESULTS_CONV_INST.mod748820
R( 34.72) 2.36 3 0.06   FD2Q(CP=>Q) RESULTS_CONV_INST.mod780517(scan_output_2)
F( 35.68) 0.96 8 0.17   ND3(C=>Z) RESULTS_CONV_INST.mod769349
R( 37.35) 1.67 5 0.12   ND2(B=>Z) RESULTS_CONV_INST.mod749821
F( 38.12) 0.77 3 0.06   IVP(A=>Z) RESULTS_CONV_INST.mod785865
R( 40.07) 1.95 4 0.11   ND3(C=>Z) RESULTS_CONV_INST.mod771585
F( 41.32) 1.25 9 0.20 ND2(A=>Z) RESULTS_CONV_INST.mod771591
R( 43.11) 1.79 24 0.51 IVP(A=>Z) RESULTS_CONV_INST.mod771633
F( 44.07) 0.95 1 0.02 AO2(A=>Z) RESULTS_CONV_INST.mod792385
R( 45.54) 1.48 1 0.02 AO36(E=>Z) RESULTS_CONV_INST.mod771831
F( 46.56) 1.02 1 0.02 AO38(A=>Z) RESULTS_CONV_INST.mod771880
R( 48.20) 1.64 1 0.06 AO36(E=>Z) RESULTS_CONV_INST.mod771901
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Static Timing Analysis
Figure 11-22 Critical Path Resynthesis

Formal timing analysis was then done to generate timing path constraints 
for the placement tool. Figure 11-23 shows an example command file for 
Pearl that checks all sequential paths for a given clock domain. The 
multiplier and ALU outputs are defined as two-cycle paths and path tracing 
on test logic was disabled. This command file is setup to run batch timing 
analysis and will be re-used at every junction in the process where timing 
analysis needs to be performed (post-placement, post-route, 
post-verification, etc.). Note that the Pearl command file would be 
modified to read the appropriate SDF file at each timing check point.

Total Inc FO Load Cell(path) Instance(net)
R(  0.00)   0.00 <-- clock      FD2Q(CP) TDSP_INST.EXECUTE_INST.UP_AR_INST.mod001859(clk)
F(  1.94)   1.94    2    0.04   FD2Q(CP=>Q)TDSP_INST.EXECUTE_INST.UP_AR_INST.mod001859
F(  3.25)   1.31    4    0.13   BF1T2(A=>Z) TDSP_INST.EXECUTE_INST.mod020971
F(  4.66)   1.42    5    0.10   MUX21(S=>Z) TDSP_INST.mod008140
F(  6.16)   1.50    3    0.08   MUX21(B=>Z) TDSP_INST.mod008144
R(  7.50)   1.34    2 0.04   MUX21N(S=>Z)TDSP_INST.mod008149(addrs_in[0])
R(  9.00)   1.50    4    0.09   OR2(B=>Z) TDSP_INST.mod008155
R( 10.20)   1.20    2    0.06   OR2(A=>Z) TDSP_INST.mod008388
R( 11.45)   1.25    3    0.08   OR2(A=>Z) TDSP_INST.mod008392
R( 12.68)   1.23    1    0.02   MUX21N(S=>Z)TDSP_INST.mod008765
F( 13.55)  0.87    2   0.04   MUX21N(B=>Z) TDSP_INST.mod008769(addrs_in[6])
F( 14.77)   1.22    1    0.04   OR2(A=>Z) TDSP_INST.mod009030
R( 16.00)   1.23    1 0.02   MUX21N(S=>Z)TDSP_INST.mod009036
F( 17.63)   1.63    1    0.22   MUX21N(A=>Z)TDSP_INST.mod009050(addrs_in[7])
R( 18.46) 0.83    1    0.22   IV16(A=>Z) TDSP_INST.DATA_BUS_MACH_INST.mod571953
F( 19.03) 0.57    2    0.25   IV16(A=>Z)
TDSP_INST.DATA_BUS_MACH_INST.mod571951(t_addrs[7])
R( 19.83) 0.80    6    0.14   IV16(A=>Z) TDSP_DS_CS_INST.mod1370866
F( 20.71)   0.88    1    0.02   NR2P(A=>Z) TDSP_DS_CS_INST.mod1370278(t_write_rcc_a)
F( 22.09)   1.39    1    0.04   MUX21(A=>Z) mod1533429(t_write_rcc)
R( 23.10)   1.00    2    0.05 IVP(A=>Z) RESULTS_CONV_INST.mod748820
R( 25.46 2.36    3    0.06   FD2QS(CP=>Q) RESULTS_CONV_INST.mod780517(scan_output_2)
F( 26.42) 0.96    8   0.17   ND3(C=>Z) RESULTS_CONV_INST.mod769349
R( 28.10)   1.67    5    0.12 ND2(B=>Z) RESULTS_CONV_INST.mod749821
F( 28.88)   0.79    3    0.08   IVP(A=>Z) RESULTS_CONV_INST.mod785865
R( 30.56)  1.68    4    0.11   ND3P(C=>Z) RESULTS_CONV_INST.mod771585
F( 31.82)   1.25    9    0.20   ND2(A=>Z) RESULTS_CONV_INST.mod771591
R( 33.61) 1.79   24 0.51 IVP(A=>Z) RESULTS_CONV_INST.mod771633
F( 34.56) 0.95    1    0.02   AO2(A=>Z) RESULTS_CONV_INST.mod792385
R( 36.04) 1.48    1    0.02   AO36(E=>Z) RESULTS_CONV_INST.mod771831
F( 37.05) 1.02    1    0.02   AO38(A=>Z) RESULTS_CONV_INST.mod771885
R( 38.70) 1.64    1    0.06   AO36(E=>Z) RESULTS_CONV_INST.mod771901
R( 38.70) 0.00                FD10Q(D)           RESULTS_CONV_INST.mod780659

The Slack Time of Long Critical Path 1 is   0.50 ns (Req. Time: 39.20 ns)
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Chip-Level Assembly Implementation
Figure 11-23 Pearl Command File

The results of this run (post-synthesis) are shown in Figure 11-24. The 
back-annotated SDF file was generated by Synergy and therefore the 
timing numbers should correlate. The maximum clock frequency for the 
design is 25.67 MHz.

ReadTechnology lib/std_cell.tch
ReadTimingModels lib/std_cell.mod
ReadVerilog lib/dtmf_recvr_core.vs
TopLevelCell dtmf_recvr_core
ReadSDF -process max ../etc/dtmf_recvr_core_synth.sdf
Clock -cycle_time 40 clk 0 20
Input * clk ^ 2 10 2 10
Constraint * clk ^ 2 2 2 2
MultiCycleNode TDSP_INST.TDSP_CORE_INST.mpy_result[31:0] 2 max
MultiCycleNode TDSP_INST.TDSP_CORE_INST.alu_result[32:0] 2 max
Blockpath reset *
Blockpath scan_input_1 *
Blockpath scan_input_2 *
Blockpath scan_input_3 *
Blockpath bist_clk *
Blockpath rcc_sclk *
Blockpath go *
Blockpath done *
Blockpath compstat *
Blockpath biston *
Blockpath bist *
Blockpath test_mode *
Blockpath scan_enable *
Blockpath * scan_output_1 
Blockpath * scan_output_2 
Blockpath * scan_output_3
TimingVerify
FindMinCycleTiming
ShowPossiblities 1
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Figure 11-24 Initial Timing Analysis Results

Possibility 1:
Setup constraint slack 1.05ns RESULTS_CONV_INST.mod780671 (FD10Q D v -> CP ^)
  Clk edge: clk ^ -> RESULTS_CONV_INST.mod780671.CP ^ at 0.00ns + Tcycle = 40.00ns
  Setup time: 0.40ns
  Data edge: clk ^ -> RESULTS_CONV_INST.mod780671.D v at 38.55ns
  Required cycle time: 38.95ns (1.0 cycle path)
    Delay  Delta Node Cell   
*  0.00ns 1.94ns clk ^ FD2Q   
   1.94ns 1.31ns TDSP_INST.EXECUTE_INST.w024354 v       BF1T2  
*  3.25ns 1.42ns TDSP_INST.w338871 v                    MUX21  
*  4.67ns 1.50ns TDSP_INST.w500319 v MUX21
*  6.16ns 1.34ns TDSP_INST.w487988 v                    MUX21N 
*  7.50ns 1.50ns TDSP_INST.addrs_in[0] ^                OR2    
   9.00ns 1.20ns TDSP_INST.w488575 ^                    OR2    
  10.20ns 1.25ns TDSP_INST.w488244 ^                    OR2    
  11.45ns 1.23ns TDSP_INST.w488117 ^                    MUX21N 
  12.68ns 0.87ns TDSP_INST.w490792 ^                    MUX21N 
  13.55ns 1.22ns TDSP_INST.addrs_in[6] v                OR2    
  14.77ns 1.23ns TDSP_INST.w488566 v                    MUX21N 
* 16.00ns 1.63ns TDSP_INST.w490794 ^                    MUX21N 
  17.63ns 0.83ns TDSP_INST.addrs_in[7] v                IV16   
  18.46ns 0.57ns TDSP_INST.DATA_BUS_MACH_INST.w326421 ^ IV16   
  19.03ns 0.80ns t_addrs[7] v                           IV16   
  19.83ns 0.88ns TDSP_DS_CS_INST.w509672 ^              NR2P   
* 20.71ns 1.39ns t_write_rcc_a v                        MUX21  
  22.09ns 1.00ns t_write_rcc v                          IVP    
* 23.10ns 2.36ns RESULTS_CONV_INST.w230421 ^            FD2QS  
  25.46ns 0.96ns scan_output_2 ^                        ND3    
* 26.42ns 1.67ns RESULTS_CONV_INST.w155441 v            ND2    
  28.10ns 0.79ns RESULTS_CONV_INST.w154981 ^            IVP    
* 28.88ns 1.68ns RESULTS_CONV_INST.w175142 v           ND3P   
  30.56ns 0.72ns RESULTS_CONV_INST.w154936 ^            IVP    
* 31.28ns 2.12ns RESULTS_CONV_INST.w181824 v            ND2P   
  33.41ns 0.98ns RESULTS_CONV_INST.w155736 ^            IVP    
  34.39ns 1.31ns RESULTS_CONV_INST.w162202 v            AO2    
  35.70ns 0.66ns RESULTS_CONV_INST.w182726 ^            AO36   
* 36.36ns 1.38ns RESULTS_CONV_INST.w157271 v            AO38   
  37.74ns 0.81ns RESULTS_CONV_INST.w162642 ^            AO36   
  38.55ns        RESULTS_CONV_INST.w098728 v         
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Design Rule Check

If a commercial ASIC vendor is being utilized, then, at this point, the 
netlist should be run through the vendor process design rule checker to 
verify that no test rules, electrical rules, or design rules have been violated. 
This may require a netlist translation. The netlist format will typically be 
Verilog, EDIF, or an internal format.

If any problems exist, they must be fixed before the vendor will sign-off 
on the design. For loading issues, wiring information can be back 
annotated from the floorplan and used during a drive optimization or 
resizing run in the synthesis tool. If the vendor DRC tools support an ECO 
capability and the number of violations is few, then a resizing run is 
recommended. Otherwise, a drive optimization run should be used. 
Serious problems may require going back and re-synthesizing certain 
modules with more pessimistic constraints and/or wire models. 

In the case of the DTMF design, an internal standard cell library was used 
for all physical design and therefore DRC/ERC checks were done during 
physical verification.
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Test Development and Validation

Once all DFT structures have been designed and verified, test development 
and validation can be done. The sections below discuss what tests need to 
be developed and the process for automatic test pattern generation (ATPG) 
and test vector verification.

ASIC Test Vector 
Suite

The following list describes a typical test suite that can be used for ASIC 
characterization and production manufacturing tests. The tests are listed in 
the order they would most likely be run for final production testing. In 
actual production testing, some tests may be run at more than one voltage 
point to test that the chip meets established margins—for process, voltage, 
and temperature—in its intended system application.

n Continuity Check

Checks for electrical contact between tester channels, DUT (Device 
Under Test) fixture and the packaged part, or in the case of wafer 
probe, between the micro-probes and the die pads.

This test is run automatically at the tester.

n Process Monitor Test

Used as a measure of the IC fab process this test is intended to monitor 
the device under test to assure that it lies within a 6-sigma range of the 
known fab process.

This is typically done by placing a special process monitor structure on 
the chip, or by performing a scan ring flush, where the propagation 
delay of a pulse through the process monitor or scan ring is measured 
and compared against expected delay times. In the case of a scan ring 
flush, the scan implementation uses a two-phase clocking style (e.g. 
LSSD) where both the master latch and slave latch clocks are asserted, 
making both latches transparent and using the scan chain to form a 
delay path from the chips scan in pin to the scan out pin.

The process monitor test is typically developed by hand, using a timing 
simulation, and requires characterization and verification of the delay 
times to correlate with the process delay parameters.
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n DC Parametric Tests

These tests are used to check that all I/O pins can drive and receive the 
correct DC level for both a logic one and a logic zero.

For output, tristate, open-collector and bidirectional I/O pins, tests that 
drive out a logic one and tests that drive a logic zero are required. The 
tester measures that each output pin can be driven to V_OH and V_OL. 
For input and bidirectional pins, input threshold tests which drive a 
logic zero and logic one are required. IEEE 1149.1 Boundary Scan will 
help facilitate generation and application of DC parametric tests, 
particularly the output tests, where the boundary scan ring can be used 
to directly drive out the desired logic values. For the input threshold 
tests the 1149.1 SAMPLE/PRELOAD or EXTEST instructions can be 
used to capture the input values for testing. Devices without boundary 
scan may require a NAND tree structure to be inserted into the design 
for input tests. In this case, V_IL and V_IH are measured at an I/O pin 
connected to the output of the last NAND gate in the tree.

DC parametric tests are usually developed by hand, although they can 
be automated if IEEE 1149.1 Boundary Scan is implemented.

n Hi-Z and Leakage Tests

These tests place the ASIC’s tristate and bidirectional I/O into a Hi-Z 
state to allow testing and measurement of high-impedance state and 
I/O input leakage current.

The device is first put into the Hi-Z state and then the tests apply a logic 
one and a logic zero to all I/O pins. Any active pull-up or pull-down 
circuits on the I/O must be disabled for these tests, as they will produce 
a DC current in the chips static state. Any other sources of DC current 
must also be eliminated for these tests, such as bus or I/O drive 
contention, floating nodes, or embedded RAM/Macros that are not 
normally be in a static state (see Chapter 4, “Design for Test 
Methodology” for further details).

n Iddq Tests

These test perform further static Iddq current measurements using test 
vectors specifically generated or graded for Iddq coverage.

All sources of DC current must be eliminated for Iddq tests, such as 
active pull-up or pull-down circuits on the chips I/O, bus or I/O drive 
contention, floating nodes, or embedded RAM/macros that are may not 
normally be in a static state.

Iddq tests can either be developed using ATPG tools, or can be a subset 
of existing functional tests which have been graded for Iddq coverage. 
Several Iddq test vectors are recommended in order to achieve high Iddq 
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fault coverage. Typically between 5 to 100 Iddq test vectors are run for 
production tests. The limiting factor is usually the test time required to 
run them. Iddq tests can take a long time to run due to the time required 
for switching currents to settle (usually in the milliseconds range) and 
depending on how the current measurements are taken -- typically 
hundreds of millisecond if the PMU of the tester is used.

n DFT Logic Tests

These tests are targeted at functional testing of the DFT logic -- such 
as scan path integrity tests, TAP controller tests, and boundary scan 
functionality tests.

These tests are generated by hand in some cases, or in other cases may 
be automatically generated along with the system logic tests.

n System Logic Tests

These test vectors are targeted at achieving high fault coverage of the 
chips core functional logic and its I/O.

These tests generally consist of one or more of the following types of 
tests:

q ATPG Stuck-At Tests

Automatically generated on full or partial scan designs.

q Built-In Self-Tests (BIST)

Generated for designs that have either RAM or logic BIST 
capabilities.

q Functional Tests

Usually provided for non-scannable logic, or in some cases for 
at-speed testing, or binning purposes. For at-speed functional 
testing, the tester must be capable of applying broadside test 
vectors at the ASICs system clock rate, at a minimum, or better at 
even slightly higher rates. Functional tests are generated by hand.

n Delay Path Tests

Delay path tests may be provided for testing and measuring critical 
timing paths.

These tests are generated by hand in some cases, in other cases they 
may be automatically generated by ATPG tools. In general, delay path 
tests are not dependent on the chip testers capability to apply broadside 
test vectors at the ASICs system clock rate.
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n AC Parametric Tests

AC parametric tests are at-speed test vectors which are targeted at 
testing the speed characteristics (i.e., set-up and hold times) of the I/O 
paths of the ASIC.

These are generally functional tests that are generated by hand using a 
timing simulation. In some cases they may not be run as part of the 
production tests for the ASIC and may be developed only for device 
characterization purposes.

Functional Test 
Development

Blocks that do not have any structured testability will need to be tested 
with hand-generated functional tests. The manual test vectors can be 
graded using composite fault grading techniques. With composite fault 
grading, an incremental fault dictionary is maintained while running each 
set of test vectors. The initial dictionary may be created by injecting faults 
in the entire design and then as each set of vectors is applied, the fault 
dictionary is updated. It is passed to each successive job as input and only 
the “new” detected faults are updated thus producing a composite fault 
grade for the design.

Automatic Test 
Pattern Generation

Figure 11-25 show a typical flow for ATPG test vector generation. This 
same flow can be used, in general, for any tests that are automatically 
generated. For example, stuck-at tests, Iddq tests, and delay path tests.

The inputs to APTG are a gate level netlist of the chip and a design library 
for ATPG. ATPG may also need design attributes and any ATPG 
constraints, which it uses to analyze the design during DFT rules checking 
and to help generate scan test vectors. The design attributes tell ATPG 
about features of the design, for example what I/O pins are used for system 
and test clocks, for scan-in/scan-out in, and for scan shift enable or test 
mode enables. The ATPG constraints provide ATPG with pre-set 
boundary values it can use to help generate test vectors. For example, if 
there is a test mode enable pin which needs to be asserted during test (to 
enable DFT features for test) its asserted logic value is given as a constraint 
to ATPG.
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Figure 11-25 ATPG and Verification Flow

Once the design netlist has been imported into ATPG, ATPG and design 
for testability rules checks are done. Often, during the rules checking, the 
scan chain orders of the chips scan paths are extracted. These can be used 
to verify the expected scan orders, and/or fed into the ATPG and vector 
verification steps. After passing the rules check, ATPG can be run on the 
design.
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Test Vector 
Verification

It is not sufficient to send the ATPG vectors generated by the ATPG tool 
directly to the vendor. These vectors need to be verified against the design 
through simulation. Figure 11-25 shows the steps for formatting the 
vectors for simulation and performing logic simulations (and for some 
vectors, timing simulations). Simulation will require a simulation protocol, 
and a timing template, describing how to apply the vectors to the design 
under simulation. Each test suite will then have a set of formatted test 
vectors and a test fixture, which runs the vectors under simulation, 
associated with it. The formatting and simulation fixture can often be done 
by the ATPG tools, or separate tools. In some cases the simulation fixtures 
are written by hand, for example for had generated tests.

The vector simulation may be a long and tedious process, since the vectors 
are serial and the scan chains get to be quite long. An ASIC with 5000 
flip-flops will need slightly more than 5000 clock cycles to simulate just 
one ATPG “vector” provided the ASIC was initialized. Just 200 ATPG 
vectors will mean over a million simulation cycles in this case. While most 
problems will probably be found within the first few ATPG vectors, that 
cannot be assumed. An alternate method for simulating ATPG vectors is 
to bypass the serial loading mechanism and instead parallel load the 
vectors directly into the flip-flops using the force functions available in the 
simulators. This greatly reduces the simulation time but requires a 
simulation environment that can do vector conversion and provide a force 
and release mechanism. Even with the parallel-load mechanism a few 
serially loaded vectors should be simulated.

Tester Formatting 
and Hand-Off

Once test vectors have been verified in simulation they can be formatted 
for the target tester —or into a format as required by the ASIC vendor—for 
design hand-off. This requires another formatting step similar to that for 
verification, including a test protocol definition and a timing template 
which describe how to apply the test vectors to the design during testing on 
the chip tester.

The following should also be considered when formatting test vectors for 
design hand-off:

n Test Partitioning

It may often be desirable to partition large test sets, such as functional 
tests or large scan vector sets, in order to deal with the data more 
efficiently, either at the tester or in formatting. If test sets are 
partitioned, care must be taken to assure that each partition is 
independent of other partitions. Each partition should be capable of 
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being executed on its own and should not require some other partition 
to be run first in order to work correctly. 

n Formatting Timesets

Care must be taken during formatting in order to provide a timeset that 
the target tester will accept. Often, testers expect all tester cycles to be 
formatted to the same timeset. Some testers will allow multiple 
timesets for each test vector load, but only up to a maximum number 
of timesets.

The tester will also require certain minimum allowable times for 
various waveforms in the timeset. For example it may require that there 
be at least 10ns from the beginning of a tester cycle before any inputs 
can change, or it may require that there be at least 5ns between the 
edges of different waveform. For outputs, certain strobe window 
requirements may have to be met. For example, the tester may require 
a minimum strobe window width of 25ns, during which time the tester 
will measure the output voltage on the pin and compare it to the 
expected logic value. Some testers also require that there exist a “dead” 
cycle between direction changes for bidirectional and tristate pins. In 
this case, neither the ASIC under test nor the tester is driving during the 
dead cycle between the direction change; both are at a high impedance 
state.

n Tester Format Validation

After formatting the tests into the tester (or ASIC vendor) format it is 
sometimes desirable to convert the formatted tests back into a 
simulation format and re-simulate the test vectors. This will help to 
assure that there are no errors being introduced by the tester formatting 
process, and that the tests will run correctly on the tester.
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Final Placement and Route

Once the gate level design is verified to be functionally correct and all 
timing constraints are met, final placement and routing can be done. Since 
hierarchy was only created for the DSP and the RCC block, the rest of the 
“soft” blocks were flattened and placed within top level regions by the cell 
placement tool using the timing path constraints.

Figure 11-26 DTMF Top-level Placement

The macro blocks were implemented standalone as well. This leaves a 
relatively simple top level place and route. Figure 11-27 shows the top 
level route.
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Figure 11-27 DTMF Top-level Route

The only placement that typically occurs at this point is through ECOs due 
to netlist changes such as resizing or clock tree generation. Power and 
ground rings and stripes are routed, followed by any special nets (such as 
clocks), and then rest of the design is routed. 

Once the design is routed, physical verification is performed to ensure that 
no design or electrical rules are violated. If verification passes, then the 
design is then ready for tape-out.
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TDSP Instruction Set
TDSP Instruction Set

Addressing mode notes:

Direct Addressing Mode - Direct addressing forms the data memory address 
by concatenating seven bits of the instruction word with the data page 
pointer. This implements a paging scheme in which each page contains 128 
words.The physical address is built by appending the immediate address with 
the current data page pointer, for example:

{DP, OPCODE[6:0]}

Indirect Addressing Mode - Indirect addressing forms the data memory 
address from the least significant eight bits of one of the two auxiliary 
registers, AR0 or AR1. The auxiliary register pointer (ARP) selects the 
current auxiliary register for indirect address generation. The auxiliary 
registers can automatically post increment or post decrement in parallel with 
the execution of any indirect instruction to permit single-instruction-cycle 
manipulation of data structures in memory. Specific support for indirect 
addressing is included in the assemble as:

* address AR(ARP)
*+ address AR(ARP), post increment AR(ARP)
*- address AR(ARP), post decrement AR(ARP)

Immediate Addressing Mode - Immediate instructions derive data from part 
of the instruction word rather from the data RAM. This can be thought of as 
a shorthand for loading constants to certain registers. Note that the typical 
immediate data size is an 8 bit constant, although certain instructions can 
handle lager constants. For reference, most immediate data instruction 
opcodes end in “k”.

For all instructions, except where noted, (PC) +1 -> PC.

Symbols:

ACC Accumulator

AR auxiliary register 0 or 1

ARP auxiliary register pointer

dma data memory address

DP data page pointer

P multiply product register
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PA port address

PC program counter

pma program memory address

T multiply Temporary register

-> assigned to

|| absolute value

() contents of

Machine words are built as follows:

ABS- Absolute value of accumulator

Direct Addressing: ABS

Indirect Addressing: N/A

Operands: N/A

Operation: |ACC|

[15:8] [7:0]

[15:8]Instruction Code

Machine Word

Direct Addressing

In-Direct Addressing

Immediate Data

0

1

[7:0]

[6:0]

Flags

Value
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ADD- Add to low accumulator

Direct Addressing: ADD dma, shift

Indirect Addressing: ADD {*|*+|*-}, shift, next ARP

Operands: 0 <= shift < = 15, 0 <= dma <= 127,  
ARP = 0, 1

Operation: (ACC) + (dma)*2shift -> ACC

Modify AR(ARP), and ARP as specified

ADDH- Add to high accumulator

Direct Addressing: ADDH dma

Indirect Addressing: ADDH {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC) + (dma)*216 -> ACC

Modify AR(ARP), and ARP as specified

ADDS- Add to low accumulator with sign-extension suppressed

Direct Addressing: ADDS dma

Indirect Addressing: ADDS {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC) + (dma) -> ACC

Modify AR(ARP), and ARP as specified

AND- And with low accumulator

Direct Addressing: AND dma

Indirect Addressing: AND {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: ((ACC) & (dma)) & 0x0000ffff -> ACC

Modify AR(ARP), and ARP as specified

APAC- Add Product to accumulator

Direct Addressing: APAC

Indirect Addressing: N/A

Operands: N/A

Operation: (ACC) + (P) -> ACC
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B- Branch unconditionally

Direct Addressing: B pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: pma -> PC

BANZ- Branch if auxiliary register != 0

Direct Addressing: BANZ pma

Indirect Addressing: BANZ pma, {*|*+|*-}, next ARP

Operands: 0 <= pma <= 0x1ff, ARP = 0, 1

Operation: IF AR(ARP) != 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

Modify AR(ARP), and ARP as specified

BGEZ- Branch if accumulator >= 0

Direct Addressing: BGEZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF (ACC) >= 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

BGZ- Branch if accumulator > 0

Direct Addressing: BGZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF (ACC) > 0, 
THEN pma -> PC 
ELSE (PC) + 2 -> PC

BIOZ- Branch if bio == 0

Direct Addressing: BIOZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff
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Operation: IF (BIO) == 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

BLEZ- Branch if accumulator <= 0

Direct Addressing: BLEZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF (ACC) <= 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

BLZ- Branch if accumulator < 0

Direct Addressing: BLZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF (ACC) < 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

BNZ- Branch if accumulator != 0

Direct Addressing: BNZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF (ACC) != 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

BV- Branch on overflow

Direct Addressing: BV pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF overflow flag == 1,

THEN pma -> PC && overflow flag -> 0
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ELSE (PC) + 2 -> PC

BZ- Branch if accumulator == 0

Direct Addressing: BZ pma

Indirect Addressing: N/A

Operands: 0 <= pma <= 0x1ff

Operation: IF (ACC) == 0,

THEN pma -> PC

ELSE (PC) + 2 -> PC

CALA- Call subroutine indirect (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

CALL- Call subroutine direct (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

DINT- Disable interrupts (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

DMOV- Data move in memory

Direct Addressing: DMOV dma

Indirect Addressing: DMOV {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> (dma) = 1

Modify AR(ARP), and ARP as specified
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EINT- Enable interrupts (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

IN- Input data from port

Direct Addressing: IN dma, port address

Indirect Addressing: IN {*|*+|*-}, port address, next ARP

Operands: 0 <= dma <= 127, 0 <= port address <= 7,

ARP = 0, 1

Operation: (port address) -> (dma)

Modify AR(ARP), and ARP as specified

LAC- Load accumulator

Direct Addressing: LAC dma, shift

Indirect Addressing: LAC {*|*+|*-}, shift, next ARP

Operands: 0 <= shift <= 15, 0 <= dma <= 127,  
ARP = 0, 1

Operation: (dma)*2shift -> ACC

Modify AR(ARP), and ARP as specified

LACK- Load accumulator with immediate constant

Direct Addressing: LACK eight-bit positive constant

Indirect Addressing: N/A

Operands: 0 <= constant <= 255

Operation: (eight-bit positive constant) -> (ACC)

LAR- Load Auxiliary register

Direct Addressing: LAR AR, dma

Indirect Addressing: LAR AR, {*|*+|*-}, shift, next ARP

Operands: AR = 0, 1, 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> auxiliary register

Modify AR(ARP), and ARP as specified
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LARK- Load Auxiliary register with immediate constant

Direct Addressing: LARK AR, eight-bit positive constant

Indirect Addressing: N/A

Operands: AR = 0, 1, 0 <= constant <= 255

Operation: (eight-bit positive constant) -> (auxiliary 
register)

LARP- Load Auxiliary register pointer

Direct Addressing: LARP one-bit constant

Indirect Addressing: N/A

Operands: 0, 1

Operation: (constant) -> (ARP)

LDP- Load data page pointer

Direct Addressing: LDP dma 

Indirect Addressing: LDP {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) & 0x01 -> data page pointer

Modify AR(ARP), and ARP as specified

LDPK- Load data page pointer with immediate constant

Direct Addressing: LDPK one-bit constant

Indirect Addressing: N/A

Operands: 0 <= constant <= 1

Operation: constant -> data page pointer

LST - Load status from data memory (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

LT- Load multiply temporary operand

Direct Addressing: LT dma

Indirect Addressing: LT {*|*+|*-}, next ARP
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Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> T register

Modify AR(ARP), and ARP as specified

LTA - Load multiply temporary operand and accumulate previous result

Direct Addressing: LTA dma

Indirect Addressing: LTA {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> T register,

(ACC) + (P register) -> ACC

Modify AR(ARP), and ARP as specified

LTD- Load multiply temporary operand, accumulate previous result, shift 
data memory

Direct Addressing: LTD dma

Indirect Addressing: LTD {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> T register,

(ACC) + (P register) -> ACC,

(dma) -> dma + 1

Modify AR(ARP), and ARP as specified

LTP - Load multiply temporary operand, move product to accumulator

Direct Addressing: LTP dma

Indirect Addressing: LTP {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> T register, (P register) -> ACC

Modify AR(ARP), and ARP as specified

LTS - Load multiply temporary operand and subtract previous result

Direct Addressing: LTS dma

Indirect Addressing: LTS {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (dma) -> T register, 
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(ACC) - (P register) -> ACC

Modify AR(ARP), and ARP as specified

MAR - Modify auxiliary register

Direct Addressing: MAR dma

Indirect Addressing: MAR {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: Modifies AR(ARP), and ARP as specified

MPY - Multiply

Direct Addressing: MPY dma

Indirect Addressing: MPY {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (T register) * (dma) -> P register

Modify AR(ARP), and ARP as specified

MPYK- Multiply with immediate constant

Direct Addressing: MPYK constant

Indirect Addressing: N/A

Operands: -212 <= constant <= 212

Operation: (T register) * constant -> P register

MAC- Multiply and accumulate

Direct Addressing: MAC dma

Indirect Addressing: MAC {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (T register) * (dma) -> P register then

(ACC) + (P register) -> ACC

Modify AR(ARP), and ARP as specified

NOP- No operation

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A
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OR- Or with low accumulator

Direct Addressing: OR dma

Indirect Addressing: OR {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: ((ACC) | (dma)) & 0x0000ffff -> ACC

Modify AR(ARP), and ARP as specified

OUT - Output data from port

Direct Addressing: OUT dma, port address

Indirect Addressing: OUT {*|*+|*-}, port address, next ARP

Operands: 0 <= dma <= 127, 0 <= port address <= 7,

ARP = 0, 1

Operation: (dma) -> (port address)

Modify AR(ARP), and ARP as specified

PAC- Move Product to accumulator

Direct Addressing: PAC

Indirect Addressing: N/A

Operands: N/A

Operation: (P register) -> ACC

POP- Pop top of stack to accumulator (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

PUSH- Push accumulator onto stack (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

RET - Return from subroutine (Not implemented)

Direct Addressing: N/A
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Indirect Addressing: N/A

Operands: N/A

Operation: N/A

ROVM- Reset overflow mode register

Direct Addressing: ROVM

Indirect Addressing: N/A

Operands: N/A

Operation: 0 -> OVM status bit

SACH- Store high accumulator

Direct Addressing: SACH dma, shift

Indirect Addressing: SACH {*|*+|*-}, shift, next ARP

Operands: 0 <= shift <= 7, 0 <= dma <= 127,

ARP = 0, 1

Operation: (ACC[31:16])*2shift -> dma

Modify AR(ARP), and ARP as specified

SACL- Store low accumulator

Direct Addressing: SACL dma

Indirect Addressing: SACL {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC[15:0]) -> dma

Modify AR(ARP), and ARP as specified

SAR- Store auxiliary register

Direct Addressing: SAR AR, dma

Indirect Addressing: SAR AR, {*|*+|*-}, next ARP

Operands: AR = 0, 1, 0 <= dma <= 127, ARP = 0, 1

Operation: (auxiliary register AR) -> dma

SOVM- Set overflow mode register

Direct Addressing: SOVM

Indirect Addressing: N/A

Operands: N/A
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Operation: 1 -> overflow mode (OVM status bit)

SPAC- Subtract P register from accumulator

Direct Addressing: SPAC

Indirect Addressing: N/A

Operands: N/A

Operation: (ACC) - (P register) -> ACC

SST- Store status (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

SUB- Subtract from high accumulator

Direct Addressing: SUB dma, shift

Indirect Addressing: SUB {*|*+|*-}, shift, next ARP

Operands: 0 < shift < 15, 0 <= dma <= 127,  
ARP = 0, 1

Operation: (ACC) - (dma)*2shift -> ACC

Modify AR(ARP), and ARP as specified

SUBC- Conditional subtract (Not implemented)

Direct Addressing: N/A

Indirect Addressing: N/A

Operands: N/A

Operation: N/A

SUBH- Subtract from high accumulator

Direct Addressing: SUBH dma

Indirect Addressing: SUB {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC) -(dma)*216 -> ACC

Modify AR(ARP), and ARP as specified
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SUBS- Subtract from accumulator with sign-extension suppressed

Direct Addressing: SUBS dma

Indirect Addressing: SUBS {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC) -(dma) -> ACC

Modify AR(ARP), and ARP as specified

TBLR- Table Read

Direct Addressing: TBLR dma

Indirect Addressing: TBLR {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC[8:0]) -> pma

(pma) -> dma

Modify AR(ARP), and ARP as specified

TBLW- Table Write

Direct Addressing: TBLW dma

Indirect Addressing: TBLW {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: (ACC[8:0]) -> pma

(dma) -> pma

Modify AR(ARP), and ARP as specified

XOR- Xor with low accumulator

Direct Addressing: XOR dma

Indirect Addressing: XOR {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: ((ACC) ^ (dma)) & 0x0000ffff -> ACC

Modify AR(ARP), and ARP as specified
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ZAC- Zero accumulator

Direct Addressing: ZAC

Indirect Addressing: N/A

Operands: N/A

Operation: 0 -> ACC

ZALH- Zero accumulator and load high

Direct Addressing: ZALH dma

Indirect Addressing: ZALH {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: 0 -> ACC[15:0]

(dma) -> ACC[31:16]

Modify AR(ARP), and ARP as specified

ZALS- Zero accumulator and load low with sign-extension suppressed

Direct Addressing: ZALS dma

Indirect Addressing: ZALS {*|*+|*-}, next ARP

Operands: 0 <= dma <= 127, ARP = 0, 1

Operation: 0 -> ACC[31:16]

(dma) -> ACC[15:0]

Modify AR(ARP), and ARP as specified
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TDSP Assembler

The TDSP assembler, tdspasm, supports compilation of source files 
formatted using the following conventions. The assembler is case in-
sensitive.

File names for assembly must with a “.asm” suffix. The assembly process 
will produce three (3) separate output files:

<file_name>.lst - composite machine, opcode listing

<file_name>.sym - cross reference table for symbols and their values

<file_name>.obj - machine object readable by your digital simulator

Source Statement 
Syntax

Typical source statement will be entered as:

[<label>:] <opcode>[<operand, (operand expression)>] [;<comment>]

Optional attributes are included in brackets, “[]”. The brackets must not 
appear in your source listing. A source statement may include a label that is 
user-defined. The label field will end in a colon, “:”. A source statement may 
include a comment that is user-defined. The comment field will start with 
semi-colon, “;”. 

The operand field may be blank or may contain a constant, an expression, or 
a previously defined symbol.

Operand expressions can be:

simple:     +, -, *, /, %

logical:    ~, ^, &, |

complex:    sin(), cos(), tan(), exp(), log(), sqrt()

Operand expressions must be enclosed in parenthesizes.

Operand values and operand expressions can contain symbols and labels.
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Define Assembly 
Time Constant 
Attribute

<label>=<constant value, (value expression)>[; <comment>]

The label field contains the symbol to be given a value. Symbols in the 
operand field must be previously defined.

Value expressions can be:

simple:     +, -, *, /, %

logical:    ~, ^, &, | << >>

complex:    sin(), cos(), tan(), exp(), log(), sqrt()

Value expressions must be enclosed in parenthesizes.

Symbol values and value expressions can contain other symbols and labels.

Constants Constants can be represented as decimal, or as hexadecimal values if 
preceded by 0x. Floating point values can be used in expressions. Note that 
floating point values will be truncated prior to operand assignment.

Example:

245 - Decimal 245

0xfc89 - Hexadecimal FC89

Initialize Word 
Attribute

.DATA - Direct, in-line 16 bit constant

.data - Direct, in-line 16 bit constant

[<label>:].DATA <value, (value expression)> [; <comment>]

“.DATA” places one value in program memory. Use this directive to place 
coefficients or other data words in program memory. TBLR can be used to 
transfer the data words from program to data memory.

Value expressions must be enclosed in parenthesizes.
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Absolute Origin 
Attribute

.AORG - Define new, absolute program origin

.aorg - Define new, absolute program origin

[<label>:].AORG <location, (location expression> [;<comment>]

“.AORG” places a value in the program location counter. Multiple “.AORG” 
statements can be included in your source listing.

Location expressions must be enclosed in parenthesizes.

Predefined 
Symbols and 
Abbreviations

Along with the machine opcodes, the following symbols are predefined for 
usage in a source listing:

AR0 - Auxiliary register zero

ar0 - Auxiliary register zero

AR1 - Auxiliary register one

ar1 - Auxiliary register one

PAn - Port Address n (PA0 through PA7)

pan - Port Address n (PA0 through PA7)

* - Indirect Addressing

+- - Indirect Addressing with post increment of 
  auxiliary register

*- - Indirect Addressing with post decrement of 
  auxiliary register
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GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000  Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

Everyone is permitted to copy and distribute verbatim copies of this license 
document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written 
document "free" in the sense of freedom: to assure everyone the effective 
freedom to copy and redistribute it, with or without modifying it, either 
commercially or noncommercially. Secondarily, this License preserves for 
the author and publisher a way to get credit for their work, while not being 
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the 
document must themselves be free in the same sense. It complements the 
GNU General Public License, which is a copyleft license designed for free 
software.

We have designed this License in order to use it for manuals for free software, 
because free software needs free documentation: a free program should come 
with manuals providing the same freedoms that the software does. But this 
License is not limited to software manuals; it can be used for any textual 
work, regardless of subject matter or whether it is published as a printed 
book. We recommend this License principally for works whose purpose is 
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice 
placed by the copyright holder saying it can be distributed under the terms of 
this License. The "Document", below, refers to any such manual or work. 
Any member of the public is a licensee, and is addressed as "you".
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A "Modified Version" of the Document means any work containing the 
Document or a portion of it, either copied verbatim, or with modifications 
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the 
Document that deals exclusively with the relationship of the publishers or 
authors of the Document to the Document's overall subject (or to related 
matters) and contains nothing that could fall directly within that overall 
subject. (For example, if the Document is in part a textbook of mathematics, 
a Secondary Section may not explain any mathematics.) The relationship 
could be a matter of historical connection with the subject or with related 
matters, or of legal, commercial, philosophical, ethical or political position 
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are 
designated, as being those of Invariant Sections, in the notice that says that 
the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document 
is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, 
represented in a format whose specification is available to the general public, 
whose contents can be viewed and edited directly and straightforwardly with 
generic text editors or (for images composed of pixels) generic paint 
programs or (for drawings) some widely available drawing editor, and that is 
suitable for input to text formatters or for automatic translation to a variety of 
formats suitable for input to text formatters. A copy made in an otherwise 
Transparent file format whose markup has been designed to thwart or 
discourage subsequent modification by readers is not Transparent. A copy 
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII 
without markup, Texinfo input format, LaTeX input format, SGML or XML 
using a publicly available DTD, and standard-conforming simple HTML 
designed for human modification. Opaque formats include PostScript, PDF, 
proprietary formats that can be read and edited only by proprietary word 
processors, SGML or XML for which the DTD and/or processing tools are 
not generally available, and the machine-generated HTML produced by some 
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such 
following pages as are needed to hold, legibly, the material this License 
requires to appear in the title page. For works in formats which do not have 
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any title page as such, "Title Page" means the text near the most prominent 
appearance of the work's title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either 
commercially or noncommercially, provided that this License, the copyright 
notices, and the license notice saying this License applies to the Document 
are reproduced in all copies, and that you add no other conditions whatsoever 
to those of this License. You may not use technical measures to obstruct or 
control the reading or further copying of the copies you make or distribute. 
However, you may accept compensation in exchange for copies. If you 
distribute a large enough number of copies you must also follow the 
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you 
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and 
the Document's license notice requires Cover Texts, you must enclose the 
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. 
Both covers must also clearly and legibly identify you as the publisher of 
these copies. The front cover must present the full title with all words of the 
title equally prominent and visible. You may add other material on the covers 
in addition. Copying with changes limited to the covers, as long as they 
preserve the title of the Document and satisfy these conditions, can be treated 
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you 
should put the first ones listed (as many as fit reasonably) on the actual cover, 
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more 
than 100, you must either include a machine-readable Transparent copy along 
with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent 
copy of the Document, free of added material, which the general network-
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using public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take 
reasonably prudent steps, when you begin distribution of Opaque copies in 
quantity, to ensure that this Transparent copy will remain thus accessible at 
the stated location until at least one year after the last time you distribute an 
Opaque copy (directly or through your agents or retailers) of that edition to 
the public.

It is requested, but not required, that you contact the authors of the Document 
well before redistributing any large number of copies, to give them a chance 
to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the 
conditions of sections 2 and 3 above, provided that you release the Modified 
Version under precisely this License, with the Modified Version filling the 
role of the Document, thus licensing distribution and modification of the 
Modified Version to whoever possesses a copy of it. In addition, you must do 
these things in the Modified Version:
1. Use in the Title Page (and on the covers, if any) a title distinct from that of the 

Document, and from those of previous versions (which should, if there were any, 
be listed in the History section of the Document). You may use the same title as 
a previous version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for 
authorship of the modifications in the Modified Version, together with at least five 
of the principal authors of the Document (all of its principal authors, if it has less 
than five).

3. State on the Title page the name of the publisher of the Modified Version, as the 
publisher.

4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other 

copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the public 

permission to use the Modified Version under the terms of this License, in the 
form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required 
Cover Texts given in the Document's license notice.

8. Include an unaltered copy of this License.
9. Preserve the section entitled "History", and its title, and add to it an item stating at 

least the title, year, new authors, and publisher of the Modified Version as given 
on the Title Page. If there is no section entitled "History" in the Document, create 
one stating the title, year, authors, and publisher of the Document as given on its 
Title Page, then add an item describing the Modified Version as stated in the 
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previous sentence.
10.Preserve the network location, if any, given in the Document for public access to 

a Transparent copy of the Document, and likewise the network locations given in 
the Document for previous versions it was based on. These may be placed in the 
"History" section. You may omit a network location for a work that was published 
at least four years before the Document itself, or if the original publisher of the 
version it refers to gives permission.

11.In any section entitled "Acknowledgements" or "Dedications", preserve the 
section's title, and preserve in the section all the substance and tone of each of 
the contributor acknowledgements and/or dedications given therein.

12.Preserve all the Invariant Sections of the Document, unaltered in their text and in 
their titles. Section numbers or the equivalent are not considered part of the 
section titles.

13.Delete any section entitled "Endorsements". Such a section may not be included 
in the Modified Version.

14.Do not retitle any existing section as "Endorsements" or to conflict in title with any 
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that 
qualify as Secondary Sections and contain no material copied from the 
Document, you may at your option designate some or all of these sections as 
invariant. To do this, add their titles to the list of Invariant Sections in the 
Modified Version's license notice. These titles must be distinct from any 
other section titles.

You may add a section entitled "Endorsements", provided it contains nothing 
but endorsements of your Modified Version by various parties--for example, 
statements of peer review or that the text has been approved by an 
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a 
passage of up to 25 words as a Back-Cover Text, to the end of the list of 
Cover Texts in the Modified Version. Only one passage of Front-Cover Text 
and one of Back-Cover Text may be added by (or through arrangements 
made by) any one entity. If the Document already includes a cover text for 
the same cover, previously added by you or by arrangement made by the 
same entity you are acting on behalf of, you may not add another; but you 
may replace the old one, on explicit permission from the previous publisher 
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give 
permission to use their names for publicity for or to assert or imply 
endorsement of any Modified Version.
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5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this 
License, under the terms defined in section 4 above for modified versions, 
provided that you include in the combination all of the Invariant Sections of 
all of the original documents, unmodified, and list them all as Invariant 
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple 
identical Invariant Sections may be replaced with a single copy. If there are 
multiple Invariant Sections with the same name but different contents, make 
the title of each such section unique by adding at the end of it, in parentheses, 
the name of the original author or publisher of that section if known, or else 
a unique number. Make the same adjustment to the section titles in the list of 
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the 
various original documents, forming one section entitled "History"; likewise 
combine any sections entitled "Acknowledgements", and any sections 
entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents 
released under this License, and replace the individual copies of this License 
in the various documents with a single copy that is included in the collection, 
provided that you follow the rules of this License for verbatim copying of 
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it 
individually under this License, provided you insert a copy of this License 
into the extracted document, and follow this License in all other respects 
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and 
independent documents or works, in or on a volume of a storage or 
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distribution medium, does not as a whole count as a Modified Version of the 
Document, provided no compilation copyright is claimed for the 
compilation. Such a compilation is called an "aggregate", and this License 
does not apply to the other self-contained works thus compiled with the 
Document, on account of their being thus compiled, if they are not 
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the 
Document, then if the Document is less than one quarter of the entire 
aggregate, the Document's Cover Texts may be placed on covers that 
surround only the Document within the aggregate. Otherwise they must 
appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute 
translations of the Document under the terms of section 4. Replacing 
Invariant Sections with translations requires special permission from their 
copyright holders, but you may include translations of some or all Invariant 
Sections in addition to the original versions of these Invariant Sections. You 
may include a translation of this License provided that you also include the 
original English version of this License. In case of a disagreement between 
the translation and the original English version of this License, the original 
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as 
expressly provided for under this License. Any other attempt to copy, 
modify, sublicense or distribute the Document is void, and will automatically 
terminate your rights under this License. However, parties who have received 
copies, or rights, from you under this License will not have their licenses 
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
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GNU Free Documentation License
The Free Software Foundation may publish new, revised versions of the 
GNU Free Documentation License from time to time. Such new versions will 
be similar in spirit to the present version, but may differ in detail to address 
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the 
Document specifies that a particular numbered version of this License "or 
any later version" applies to it, you have the option of following the terms and 
conditions either of that specified version or of any later version that has been 
published (not as a draft) by the Free Software Foundation. If the Document 
does not specify a version number of this License, you may choose any v
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