20010025363 A
a9 United States

12y Patent Application Publication (i) Pub. No.: US 2001/0025363 Al

Ussery et al. (43) Pub. Date: Sep. 27, 2001
(54) DESIGNER CONFIGURABLE Publication Classification
MULTI-PROCESSOR SYSTEM
(51) T0te CL7 oo GO6F 17/50
(76) Inventors: Cary Ussery, Hamilton, MA (US); Oz (52) US. CLi oo 716/1
Levia, Sunnyvale, CA (US); John
Gostomski, Rochester, NY (US); Gzim (57) ABSTRACT

Derti, Victor, NY (US); Mark A.

Indovina, Rochester, NY (US) A designer configurable processor for a single or multi-

processing system is described. The processor includes a
plurality of designer configurable computational units, such
as Very Long Instruction Word (VLIW) processor task
engine, that operate in parallel. A memory device commu-
nicates with the plurality of computational units through a
data communication module. The memory device stores at

Correspondence Address:

TESTA, HURWITZ & THIBEAULT, LLP
HIGH STREET TOWER

125 HIGH STREET

BOSTON, MA 02110 (US)

(21) Appl. No.: 09/757,373 least one of data and instruction code. A software develop-
ment tool, which can include a compiler, an assembler, an

(22) Filed: Jan. 9, 2001 instruction set simulator, or a debugging environment, con-
figures the plurality of computational units. The software

Related U.S. Application Data development tool configures various aspects of the processor

architecture and various operating parameters of the proces-

(63) Non-provisional of provisional application No. sor and can generate a synthesizable RTL description of the

60/191,998, filed on Mar. 24, 2000. processor and a single or multi-processing system.

25D
/

253

Rehearsal Development g

y Board
2?‘{ {FPGA and PSA)

Program Image
(Binary)

Platform Definition

254 : 252
/7.6‘/ :
) Notation E 256
Application Library Environment : Platform and Processor L~
s (Application Development) [= Configuration

xE
Instruction Set < Y ~ .
Simulator Compillation H
/| (1SS) < Environment o
ey A (Platform Mapping) H
L]
-

Implementation Kit L~ e
{Genaral or Vendor-Specific)

v

Standard ASIC/
IC Design Flow

|

System Integration

Patent Application Publication Sep. 27,2001 Sheet 1 of 8 US 2001/0025363 A1

Data Data Data Data
Memory Memory Memory Memory
Port Port Port Port
Mxs > 1
1L 7 4;,,,4 sy AL/uu PRI
12~ [MIU] (MU] [T, eee [WU £ jo>
180 —xu = |
B — — ™ .
i LTT,IB LTrHBiL /H$ iL AL T Tesk
Data Communication Module I Queue
HE —_{-L i iL 12 :LT [— 12— 1::3::3 -
el LY § 3 %%g\;y:é: : ?%:;_ 46 f g P
z:w Ly j E ns
- v
Instruction Q-Bus
Memory
\
N&

Flé.

Patent Application Publication Sep. 27,2001 Sheet 2 of 8 US 2001/0025363 A1

gy 1o
C

Task Queue Unit

' ' :

Standard P?ig? Interrupt
Task Queue ty Task Queue
Task Queue

o Lo T s]

]

/

0%

ontroller Task'\
Bus

¢

Fle.

Patent Application Publication

Controller Task

/ 106
A
Task Controller Unit [— 152
M Instruction
160 Decompression
] Task
MIU Control
\ Control Bus instruction
Decode ™~
N7 Miu 154
Controf
162 — Branch
Datacom Controt L1y
\ Control Bus Datacom
\ Y~ Control
1S] be — Constant
Registers
CU B cu \
Control Bus | Control
163 -] 15%
j2s”

Sep. 27,2001 Sheet 3 of 8

US 2001/0025363 A1

Instruction
Memory

\
ha

Patent Application Publication Sep. 27,

2001 Sheet 4 of 8

Data
Memory

|~ 1F0

Port

ata Memory '\

/o

- \19

7

US 2001/0025363 A1

e

MIU

\ Control Bus

Memory Interface Unit T
Address Local
Generation Data
] / Unit Registers A
FN L T 1 : 17y
P
4
/
§ p.
[72]
0

Flé. Y

/H?'

Patent Application Publication Sep. 27,2001 Sheet 5 of 8

=N

US 2001/0025363 A1

o U)

Sa

a

| 2Y
~_ /
I |19
Input Result
Selector Registers
A —
Datapath
Operation
[} /L CU
Computation Unit Cor{rol Bus
129
/

Fl6. S

Sep. 27,2001 Sheet 6 of 8 US 2001/0025363 A1

Patent Application Publication

~o 51 4

vg ‘9

sng-o \ P
zol 00l 00l 0ol
3\ ’ J J
j 10S$8001d 10858301 108562014 ‘—
on \)) / ol
1 1l T
.ﬂQN V4 %0 Won WEI] O H./QW
[¥2% hel
et ”
sng-o \ >
ol ol
[Nosoms oo]
10858001d F'N_B 10§$9004d
(07]] (o7]]
| m— 1] aa—
ol 4 108530014 f.m WO =7 08599014 .naad
00!~ hot 20% \
y 00|
ol
sng-0 >
20l \ ool NI ._I.h.n _
Jossaoong [Eﬁ
/ i
on / ! . hot 10858501 on
. : {
Nox \ 10852201 Jod Eﬁﬁw Hi\ dcﬂ
ool = y he
ool

Sep. 27,2001 Sheet 7 of 8 US 2001/0025363 A1

Patent Application Publication

mol4 ubiseq of
/ DISY piepuels

+

(o15193dg-10pUBA 10 |RIBUID))

4+ ol d

uonebeju) weysAs

[Yo

(R1euig)

abew| wesboid

(Bbuiddey wiogeld)
juswuoliAug

09 1 1) uopeyuswejdwy
uoliuyeq wiojield
gse
uoneinbyuon
_~| Jossaoouid pue wiopeld
95¢

S
258

s

uopejidwo)

Y

(vsd pue yvodd)
pJieog
juswdojorsq |esieayay

N

grc— 4

Yy v

(ss)
Jlojeinwig
}8g uojonsu|

(luswdojanaq uonesyddy)
jusIUONAUT
uo1jeION

e

hs

|

hEL

£

Patent Application Publication Sep. 27,2001 Sheet 8 of 8 US 2001/0025363 A1

Ion

mplementat
Guide

300
f

inition

Platform
Def

A AL

source files

Preprocessor

US 2001/0025363 Al

DESIGNER CONFIGURABLE MULTI-PROCESSOR
SYSTEM

RELATED APPLICATIONS

[0001] This application claims priority to provisional
patent application Ser. No. 60/191,998, filed on Mar. 24,
2000, the entire disclosure of which is incorporated herein
by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to configurable elec-
tronic systems. In particular, the present invention relates to
methods and apparatus for designer configurable multi-
processor systems.

BACKGROUND OF THE INVENTION

[0003] Custom integrated circuits are widely used in mod-
ern electronic equipment. The demand for custom integrated
circuits is rapidly increasing because of the dramatic growth
in the demand for highly specific consumer electronics and
a trend towards increased product functionality. Also, the
use of custom integrated circuits is advantageous because
custom circuits reduce system complexity and, therefore,
lower manufacturing costs, increase reliability and increase
system performance.

[0004] There are numerous types of custom integrated
circuits. One type consists of programmable logic devices
(PLDs), including field programmable gate arrays (FPGAs).
FPGAs are designed to be programmed by the end designer
using special-purpose equipment. Programmable logic
devices are, however, undesirable for many applications
because they operate at relatively slow speeds, have a
relatively low capacity, and have relatively high cost per
chip.

[0005] Another type of custom integrated circuit are appli-
cation-specific integrated circuits (ASICs), including gate-
array based and cell-based ASICs, which are often referred
to as “semicustom” ASICs. Semi-custom ASICs are pro-
grammed by either defining the placement and interconnec-
tion of a collection of predefined logic cells which are used
to create a mask for manufacturing the IC (cell-based) or
defining the final metal interconnection layers to lay over a
predefined pattern of transistors on the silicon (gate-array-
based). Semi-custom ASICs can achieve high performance
and high integration, but can be undesirable because they
have relatively high design costs, have relatively long design
cycles (i.e., the time it takes to transform a defined func-
tionality into a mask), and relatively low predictability of
integrating into an overall electronic system.

[0006] Another type of custom integrated circuit is
referred to as application-specific standard parts (ASSPs),
which are non-programmable integrated circuits that are
designed for specific applications. These devices are typi-
cally purchased off-the-shelf from integrated circuit suppli-
ers. ASSPs have predetermined architectures and input and
output interfaces. They are typically designed for specific
products and, therefore, have short product lifetimes.

[0007] Yet another type of custom integrated circuit is
referred to as a software-only architecture. This type of
custom integrated circuit uses a general-purpose processor
and a high-level language compiler. The designer programs

Sep. 27, 2001

the desired functions with a high-level language. The com-
piler generates the machine code that instructs the processor
to perform the desired functions. Software-only designs
typically use general-purpose hardware to perform the
desired functions and, therefore, have relatively poor per-
formance because the hardware is not optimized to perform
the desired functions.

[0008] A relatively new type of custom integrated circuit
uses a configurable processor architecture. Configurable
processor architectures allow a designer to rapidly add
custom logic to a circuit. Configurable processor circuits
have relatively high performance and provide rapid time-
to-market. There are two major types of prior art config-
urable processors circuits. One type of configurable proces-
sor circuit uses configurable Reduced Instruction-Set
Computing (RISC) processor architectures. The other type
of configurable processors circuit uses configurable Very
Long Instruction Word (VLIW) processor architectures.

[0009] Configurable RISC processor circuits are com-
monly used today. These processor circuits provide the
ability to introduce custom instructions into the RISC pro-
cessor to accelerate a common operation. Custom logic for
these operations can be added into the sequential data path
of the processor. Configurable RISC processor circuits have
a modest incremental improvement in performance relative
to non-configurable RISC processors circuits.

[0010] The improved performance of configurable RISC
processor circuits relative to ASIC circuits is achieved by
converting operations that take multiple RISC instructions
to execute and reducing them to a single operation. How-
ever, the incremental performance improvements achieved
with configurable RISC processor circuits are far less than
custom circuits that parallelize data flow by using a custom
logic block.

[0011] Configurable VLIW processor architectures are
currently being used in high-end Digital Signal Processing
(DSP) circuits. Configurable VLIW processor architectures
can achieve significant increases in performance by using
parallel execution of operations. The performance improve-
ments of VLIW processors are achieved by increasing the
width of the instructions. VLIW processors require more
complex compilers to compile the VLIW instructions and
require a relatively large amount of memory for a particular
application.

[0012] Prior art configurable VLIW processor architec-
tures are difficult to design and difficult to support with
high-level language compilers. The ability to add custom
units in these prior art configurable VLIW processor archi-
tectures is limited to adding custom units in predefined
locations in the data path. Configurability is typically
achieved by custom, assembly language programming. Fur-
thermore, these prior art configurable VLIW processor
architectures are single processor architectures.

SUMMARY OF THE INVENTION

[0013] The present invention relates to designer config-
urable multi-processor systems and designer configurable
processors. The present invention also relates to methods of
using a software program to create designer-defined custom
processors and multi-processor hardware systems. Config-
urable processors and multi-processor systems of the present

US 2001/0025363 Al

invention allow designers to rapidly configure custom hard-
ware architectures of single or multi-processor systems.
Such systems are useful for very high-performance appli-
cations like network processing, multi-channel speech pro-
cessing and image/video processing that require a degree of
programmability.

[0014] One advantage of the designer configurable multi-
processor system of the present invention is that designers
can define and integrate custom data path elements into a
processor. Another advantage of the designer configurable
multi-processor system of the present invention is that the
designer can define and integrate custom computational
units into a processor. These custom data paths and com-
putational units can be tailored to very specific applications
and can enable the designer to significantly improve the run
time performance of the processor.

[0015] Accordingly, the present invention features a
designer configurable processor that can be used in a multi-
processing system. The processor includes a plurality of
designer configurable computational units that operate in
parallel. In one embodiment, the designer configurable com-
putational units comprise Very Long Instruction Word
(VLIW) processor task engines. The computational units
can include a set of input registers and a set of result
registers.

[0016] The designer configurable processor also includes
one or more memory devices that communicate with the
plurality of computational units through a data communica-
tion module. Each memory device stores data and/or instruc-
tion code. In one embodiment, the data communication
module is a register routed data communication module.

[0017] In one embodiment, the designer configurable pro-
cessor includes a task queue that communicates with a task
queue control module. The task queue control module
schedules tasks for the processor. The task queue can include
up to three queue modules for standard, high priority, and
interrupt task queue functionality. Multi-processing systems
include a task queue that communicates via a common task
queue bus for each of the multiple processors. The processor
can also include an instruction memory that communicates
with the task queue controller module. The instruction
memory stores tasks for the processor.

[0018] The designer configurable processor also includes
a software development tool that configures the plurality of
computational units. The software development tools can
include a compiler, an assembler, an instruction set simula-
tor, or a debugging environment. The software development
tool can also include a graphical interface that visually
illustrates the configuration of the processor to assist the
designer in configuring the processor. In one embodiment,
the software development tool generates a synthesizable
RTL description of the processor that can be used to fabri-
cate the multi-processing system. In one embodiment, the
software development tool generates a synthesizeable RTL
description of a complete single or multi-processing system.

[0019] The software development tool configures various
aspects of the processor architecture. For example, the
software development tool can configure an instruction set
of at least one of the plurality of computational units. The
software development tool can also configure data paths to
an input/output module. The software development tool can

Sep. 27, 2001

also configure the width of the data path of at least one of the
plurality of computational units. The software development
tool can also configure data routing paths of at least one of
the plurality of computational units. The software develop-
ment tool can also configure the task queue to include up to
three queue modules for standard, high priority, and inter-
rupt task queue functionality and also to define the depth of
each queue. The software development tool can also con-
figure the plurality of memory interface units.

[0020] In addition, the software development tool can
configure various operating parameters of the processor. For
example, the software development tool can configure an
instruction execution speed of at least one of the plurality of
computational units. The software development tool can
also configure the energy that is required to operate at least
one of the plurality of computational units.

[0021] The present invention also features a designer
configurable multi-processor system. The system includes a
plurality of designer configurable processors or task engines.
In one embodiment, at least one of the plurality of proces-
sors comprises a Very Long Instruction Word (VLIW)
processor. Each of the processors includes a plurality of
designer configurable computational units that operate in
parallel.

[0022] The multi-processor system also includes a
memory device that communicates with the plurality of
computational units of the processor task engines through a
data communication module. The memory device stores at
least one of data and instruction code for the computational
units.

[0023] The multi-processor system also includes an input/
output (I/0O) module that communicates with at least one of
the plurality of processor task engines through an I/O
interface unit, such as an Internal Bus Interface Unit (IBIU)
or External Bus Interface Unit (EBIU). The software devel-
opment tool can also configure the I/O module features
including, but not limited, to size and type of control
registers, interrupt mechanisms, wait state functionality,
arbitration functionality, and size and type of memory.

[0024] The multi-processor system also includes a soft-
ware development tool that configures the multi-processor
system. The software development tools can include at least
one of a compiler, an assembler, an instruction set simulator,
or a debugging environment. The software development tool
can also include a graphical interface that visually illustrates
the configuration of the processor to assist the designer in
configuring the processor. In one embodiment, the software
development tool generates a synthesizable RTL description
of the plurality of processors or of the multi-processor
system that can be used to fabricate the multi-processing
system.

[0025] The software development tool configures various
aspects of the multi-processor system and the processor
architecture. For example, the software development tool
can configure an instruction set of at least one of the plurality
of computational units. The software development tool can
also configure data paths and data path widths to and from
an input/output module. The software development tool can
also configure the width of the data path of at least one of the
plurality of computational units. The software development
tool can also configure data routing paths of at least one of
the plurality of computational units.

US 2001/0025363 Al

[0026] In addition, the software development tool can
configure various operating parameters of the plurality of
processors and of the multi-processor system. For example,
the software development tool can configure an instruction
execution speed of at least one of the plurality of compu-
tational units in a processor. The software development tool
can also configure the energy that is required to operate at
least one of the plurality of computational units in a pro-
CeSSOr.

[0027] The present invention also features a method of
defining a computational unit for multiprocessor hardware
system. The method includes defining at least one of the
architecture and the operating parameters of at least one
computation unit in a Very Long Instruction Word (VLIW)
processor with a software development tool.

[0028] The architecture can include the instruction set of
the at least one computation unit. The architecture can also
include the data path width of the at least one computation
unit. In addition, the architecture can include the internal
data routing path of the at least one computation unit. The
operating parameters can include the instruction speed of the
at least one computation unit. The operating parameters can
also include the energy used to operate the at least one
computation unit with the software development tool.

[0029] The method also includes generating data from the
software development tool that integrates the computation
units, memory interface units, task queue, and I/O modules
into the VLIW processor task engine. In one embodiment,
scripts are generated for electronic design automation tools.
In one embodiment, the method also includes performing a
consistency check to validate the multi-processor hardware
system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] This invention is described with particularity in the
appended claims. The above and further advantages of this
invention can be better understood by referring to the
following description in conjunction with the accompanying
drawings, in which like numerals indicate like structural
elements and features in various figures. The drawings are
not necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.

[0031] FIG. 1 illustrates a block diagram of a configurable
VLIW processor task engine of the present invention.

[0032] FIG. 2 illustrates a block diagram of one embodi-
ment of a task queue for the configurable VLIW processor
task engine of the present invention.

[0033] FIG. 3 illustrates a block diagram of one embodi-
ment of a task controller unit for the configurable VLIW
processor task engine of the present invention.

[0034] FIG. 4 illustrates a block diagram of one embodi-
ment of a memory interface unit for the configurable VLIW
processor task engine of the present invention.

[0035] FIG. 5 illustrates a block diagram of one embodi-
ment of a computation unit for the configurable VLIW
processor task engine of the present invention.

[0036] FIGS. 6a through 6c¢ illustrate block diagrams of
programmable multi-processor system architectures that
include a plurality of VLIW processor task engines accord-
ing to the present invention.

Sep. 27, 2001

[0037] FIG. 7 illustrates a block diagram of one embodi-
ment of software tools according to the present invention
that configure a multi-processor system architecture includ-
ing VLIW processor task engine of the present invention.

[0038] FIG. 8 illustrates a block diagram of one embodi-
ment of the implementation kit that generates a hardware
description of the VLIW processor task engines and the
multi-processor system that are used to fabricate the chip.

DETAILED DESCRIPTION

[0039] FIG. 1 illustrates a block diagram of a configurable
VLIW processor task engine 100 of the present invention.
The processor or task engine 100 can be used in a single or
a multiprocessor system. The processor task engine 100
communicates with the system through a task queue bus
(Q-Bus) 102. The Q-bus 102 is a global bus for communi-
cating on-chip task and control information between the
processor task engines. The task engine 100 includes a task
queue 104 that communicates with the task queue bus 102.
The task queue 104 includes a stack, such as a FIFO stack,
that stores tasks. The processor task engine executes its task
list in FIFO order.

[0040] The processor task engine 100 also includes a task
control unit 106 that communicates with the task queue 104
through a task controller bus 103. The task control unit 106
includes an instruction decoder 108 that decompresses and
decodes the instructions stored in an instruction memory so
that they can be understood and executed by the task engine
100. The task control unit 106 also includes a branch control
unit 110 that controls the order of executing instructions in
the processor task engine 110.

[0041] The processor task engine 100 also includes an
instruction memory 112. The instruction memory 112 is in
communication with the task control unit 106 through a
memory bus 113. The instruction memory 112 stores any
type of instructions. The instruction memory 112 can be
shared memory or private memory. The instruction decoder
108 in the task control unit 106 determines the desired
memory address.

[0042] The processor task engine 100 also includes a data
communication module 114 that routes data in the task
engine 100. In one embodiment, the data communication
module 114 includes an array of bus multiplexers that
performs the function of a crossbar switch. The data com-
munication module 114 communicates with the task control
unit 106 through a data communication control bus 115.
Instructions and task control information from the task
control unit 106 are transmitted directly to the data com-
munication module 114. The branch controller module 110
receives control information from the data communication
module 114 and causes the task control unit 106 to change
the task schedule.

[0043] The processor task engine 100 also includes at least
one memory interface unit 116. In one embodiment, the
processor task engine 100 includes a plurality of memory
interface units 116. The memory interface units 116 com-
municate with the task control unit 106 through a memory
interface unit control bus 117. The memory interface units
116 include one or more read or write memory ports 118 that
communicate the data communication module 114. The
memory interface units 116 also include a data memory port

US 2001/0025363 Al

bus 119 that communicates with data memories. Each of the
memory interface unit 116 has an address generation unit
120 and one or more local registers 122 for storing data and
address information.

[0044] The processor task engine 100 includes at least one
logic or computational unit 124 that is in communication
with the data communication module 114. The task control
unit 106 communicates with the computational units 124
through a computational unit control bus 125. The compu-
tational unit 124 can be a designer configurable custom
logical or computational unit. For example, the computa-
tional unit 124 can be any type of computation unit such as
an ALU, multiplier, or shifter. In one embodiment, the
processor task engine 100 includes a plurality of computa-
tion units 124. Multiple read or write memory ports 118 can
be attached to each of the computation units 124.

[0045] Designers can define the number and type of opera-
tions that can be executed for each instruction of each
computation unit 124. For example, to implement ALU
intensive application domains, a designer can create a task
engine with three ALUs, one shifter and one MAC. To
implement MAC-intensive and balanced application
domains, a designer can also create a processor with two
ALUs, two shifters and two MACs.

[0046] In one embodiment, the data communication mod-
ule 114 is a register-routed module that manages routing of
data from register-to-register. The data communication mod-
ule 114 routes data from result or data memory registers to
input registers of the computational units 124. The data
communication module 114 also routes data from result
registers of computational units 124 to result or data
memory registers. One feature of the present invention is
that the designer can configure the data communication
module 114 to define a collection of parallel data path
elements (such as ALUs, MACs, etc.) in the task engine 100.

[0047] The VLIW processor task engine 100 of the present
invention is a highly configurable processor. The designer
can use software tools to add custom logic and computation
units into the data paths that implement the specific func-
tionality of a target application. These custom logic and
computation units significantly improve performance of the
processor. Thus, one advantage of the VLIW task engine of
the present invention is that the overall system performance
can be increased by creating different combinations of
computation and logic units within the processor that are
designed for specific applications. This avoids the necessity
of adding custom logic and instructions.

[0048] The designer can also use software tools to add
custom data paths, which also can significantly improve
performance of the processor. Thus, another advantage of
the VLIW task engine of the present invention is that the task
engine 100 does not aggregate the computation units 126
into a single data path. The designer can add custom data
paths, which optimize the performance of the computation
unit 124 for each instruction. The designer can also define a
collection of parallel data path elements (ALUs, MACs,
etc.) in the task engine 100.

[0049] FIG. 2 illustrates a block diagram of one embodi-
ment of a block diagram of a task queue 104 for the
configurable VLIW processor task engine 100 of the present
invention. The processor task engine 100 communicates

Sep. 27, 2001

with the system through the Q-bus 102. The Q-bus is
coupled to the task queue 104. The task queue 104 commu-
nicates with the task control unit 106 through the task
controller bus 103. Control information is communicated
from the task queue 104 to the computational or logic units
124 of the VLIW processor task engine 100.

[0050] The task queue 104 includes a standard task queue
144 that, in one embodiment is a stack, such as a FIFO stack,
that stores tasks received from the task queue bus 102. The
task queue 104 also includes a high priority task queue 146
that stores priority tasks received from the task queue bus
102. In addition, the task queue 104 includes an interrupt
task queue 148 that stores interrupt tasks. Numerous other
embodiments of the task queue 104 can be used with the
processor task engine 100 of the present invention.

[0051] FIG. 3 illustrates a block diagram of one embodi-
ment of a task controller unit 106 for the configurable VLIW
processor task engine 100 of the present invention. The task
controller unit 106 communicates with the instruction
memory 112 through the memory bus 113. The task con-
troller unit 106 includes an instruction decompression unit
152 that decompresses instructions received from the
instruction memory that were compressed to reduce the
number of bytes required to store the instructions.

[0052] An instruction decoder 154 decodes the decom-
pressed instructions to generate instructions that can be
executed by the computational or logic units 124. The
branch control unit 110 controls the order of executing
instructions in the processor task engine 110. The task
controller unit 106 also includes constant registers.

[0053] The task controller unit 106 communicates with the
task queue 104 through the task controller bus 103. The task
controller unit 106 includes controlling circuitry 160 for
managing the operation of the task controller unit 106. The
task controller unit 106 also includes memory interface unit
control circuitry 162 that is coupled to the memory interface
unit control bus 117.

[0054] In addition, the task controller unit 106 includes
data communication control circuitry 166 that is coupled to
the data communication module 114 through a control bus
115. Furthermore, the task controller unit 106 includes
computational unit control circuitry 168 that is coupled to
the logical or computational units 124 through the compu-
tation unit control bus 125. Numerous other embodiments of
the task controller unit 106 can be used with the processor
task engine 100 of the present invention.

[0055] FIG. 4 illustrates a block diagram of one embodi-
ment of a memory interface unit 116 for the configurable
VLIW processor task engine 100 of the present invention.
The memory interface unit 116 communicates with a data
memory 170 through the data memory port bus 119. The
memory interface unit 116 receives instructions from the
task controller unit 106 through the memory interface unit
control bus 117. The memory interface unit 116 communi-
cates with the data communication module 114 through the
data communication bus 118. The memory interface unit 116
includes an address generation unit 172. The memory inter-
face unit 116 also includes local data registers 174 for
storing data. Numerous other embodiments of the memory
interface unit 116 can be used with the processor task engine
100 of the present invention.

US 2001/0025363 Al

[0056] FIG. 5 illustrates a block diagram of one embodi-
ment of a computation unit 124 for the configurable VLIW
processor task engine 100 of the present invention. The task
controller unit 106 sends task instructions to the computa-
tion unit 124 through the computation unit control bus 125.
The instructions are routed to an input selector 180 and to a
data path operation unit 182. The computation unit 124
communicates with the data communication module 114
through the data communication bus 118.

[0057] Data is transported to and from the data commu-
nication module 114 through the data communication bus
118. The data path operation unit 182 performs operations
on the data and stores the results of the operation in result
registers 184. Numerous other embodiments of the compu-
tation unit 124 can be used with the processor task engine
100 of the present invention.

[0058] FIG. 6a through FIG. 6c illustrate embodiments of
programmable multi-processor system architectures that
include a plurality of VLIW processor task engines 100
according to the present invention. The multi-processor
systems include system input/output interfaces. The multi-
processor systems also include data memories that provide
data communication between processor task engines. The
architecture of the multi-processor system and the configu-
ration and programming of the VLIW processor task engines
100 are chosen to perform application specific functions in
the multi-processor system 200.

[0059] FIG. 6a illustrates one embodiment of a program-
mable multi-processor system architecture 200 that includes
a plurality of VLIW processor task engines 100 according to
the present invention. The multi-processor system 200
includes three VLIW processor task engines 100. Each of the
processor task engines 100 is coupled to the Q-bus 102 as
described in connection with FIG. 1.

[0060] The multi-processor system architecture 200 also
includes two I/O units 202. The I/O units 202 interface with
external devices and input data to the multi-processor sys-
tem 200 and that output resulting or computed data. The I/O
units 202 are coupled to the Q-bus and to at least one of the
VLIW processor task engines 100. In the embodiment
shown in FIG. 6a, two of the processor task engines 100
share one of the I/O units 202. One advantage of the
multi-processor system architecture 200 is that the proces-
sors task engines 100 and the I/O units 202 are attached to
a single global bus (Q-bus 102) that communicates on-chip
task and control information between the processor task
engines 100 and that inputs instructions and inputs and
outputs data.

[0061] The multi-processor system architecture 200 also
includes two data memories 204 that facilitate data commu-
nication between the VLIW processor task engines 100. The
processor task engines 100 communicate with the data
memories 204 through a data bus 206. In one embodiment,
the data memories 204 are on-chip data memories. In one
embodiment, the data memories 204 are shared memories
that are shared between two or more processor task engines
100. In other embodiment, the data memories 204 are
private data memories that are private to particular task
engines 100. In the embodiment shown in FIG. 64, each of
the two data memories 204 is shared by two of the proces-
sors task engines 100.

[0062] The multi-processor system architecture 200 also
includes instruction memories (not shown) that communi-

Sep. 27, 2001

cate with the VLIW processor task engines 100. The instruc-
tion memories interface with the task controller module 106
of the task engine 100 as described in connection with FIG.
1. In one embodiment, the instruction memories are shared
memories that are shared between two or more processor
task engines 100. In other embodiment, the instruction
memories are private data memories that are private to
particular task engines 100.

[0063] FIG. 6b illustrates another embodiment of a pro-
grammable multi-processor system architecture 210 that
includes a plurality of VLIW processor task engines 100
according to the present invention. The multi-processor
system architecture 210 includes four processor task engines
100. Each of the processor task engines 100 is coupled to the
Q-bus 102. The multiprocessor system architecture 210 also
includes two I/O units 202 that input data to the multipro-
cessor system 210 and that output resulting or computed
data. The I/O units 202 are coupled to the Q-bus and coupled
to two of the VLIW processor task engines 100. The
multi-processor system architecture 210 also includes two
data memories 204 that facilitate data communication
between the processors. The VLIW processor task engines
100 communicate with the data memories 204 through the
data bus 206. Each of the two data memories 204 is shared
by two of the processors task engines 100.

[0064] FIG. 6c¢ illustrates another embodiment of a pro-
grammable multi-processor system architecture 210 that
includes a plurality of VLIW processor task engines 100
according to the present invention. The multi-processor
system architecture 210 includes three processor task
engines 100. Each of the processor task engines 100 is
coupled to the Q-bus 102. The multiprocessor system archi-
tecture 210 also includes two I/O units 202 that input data to
the multiprocessor system 210 and that output resulting or
computed data. The I/O units 202 are coupled to the Q-bus
and coupled to one of the VLIW processor task engines 100.

[0065] The multi-processor system architecture 210 also
includes two data memories 204 that facilitate data commu-
nication between the processors. One of the VLIW processor
task engines 100" is not directly coupled to an I/O unit 202
and can input and output data only though the data memories
204. The VLIW processor task engines 100 communicate
with the data memories 204 through the data bus 206. Each
of the two data memories 204 is shared by two of the
processors task engines 100. There are numerous other
embodiments of multi-processor system architectures that
include a plurality of VLIW processor task engines 100
according to the present invention.

[0066] FIG. 7 illustrates a block diagram of one embodi-
ment of software tools 250 according to the present inven-
tion that configure a multi-processor system architecture
including VLIW processor task engine 100 of the present
invention. Software tools according to the present invention
can include any type of software tool, such as a software
compiler, an assembler, a processor instruction set simulator,
or a software debug environment.

[0067] The software tools 250 include a designer interface
that can have an intuitive drag-and-drop facility to arrange
various software objects. In one embodiment, the software
tools 250 have high-level language programmability. High-
level language programmability reduces the time-to-market.
Also, high-level language programmability is advantageous

US 2001/0025363 Al

for configuring VLIW processor task engines because of the
complexity of managing parallel data path elements, mul-
tiple memory accesses and distributed register systems.
Generally, the software tools 250 include hardware defini-
tion tools 252 and software development tools 254.

[0068] The hardware definition tools 252 include platform
and processor configuration software 256. The designer
inputs a relatively simple description of the multi-processor
hardware architecture, task engines, and logic units into the
platform and processor configuration software 256. The
designer can define the type and number of VLIW processor
task engines, shared data memories, and the number and
type of I/O modules that implements the designer’s target
application. In one embodiment, the descriptions of the
multi-processor hardware architecture, task engines, and
logic units are written in Verilog, which is supported by a
pre-processor for controlled generation. The Verilog files are
added into the system and are used to generate complete
processors and multi-processor structures.

[0069] The hardware definition tools 252 include platform
definition software 258. The platform definition software
258 receives code generated by the platform and processor
configuration software 256. The platform definition software
258 generates code for an implementation kit that imple-
ments the multi-processor system architecture in an appli-
cation specific integrated circuit. The platform definition
software 258 also generates code for the software develop-
ment tools 254 that is used for application development and
compilation.

[0070] The hardware definition tools 252 also include an
implementation kit 260. The implementation kit 260 gener-
ates the code required to implement a designer-defined
multiprocessor system architecture that includes VLIW pro-
cessor task engines 100 of the present invention in a chip
262. In one embodiment, the code generated by the imple-
mentation kit 260 is general code that can be implemented
with industry standard Application Specific Integrated Cir-
cuits (ASICs). In other embodiments, the code generated by
the implementation kit 260 is specific to particular ASIC
vendors. The implementation kit 260 is described in more
detail in connection with FIG. 8.

[0071] The software development tools 254 include a
notation or application development environment 264. The
application development environment 264 receives the code
generated by the platform definition software 258. An appli-
cation library 266 that includes predefined code for specific
applications can be available to the application development
environment 264. Using predefined code for specific appli-
cations generally reduces the time-to-market.

[0072] The software development tools 254 include a
compilation environment or compiler 268. Other embodi-
ments of the software development tools 254 include an
assembler. The compiler 268 receives code generated by the
platform definition software 258 and by the application
development environment 264 and compiles the code to
generate a binary program image 270 of a hardware descrip-
tion.

[0073] The compiler 268 generates a specific, synthesize-
able hardware description of the multiprocessor hardware
system including VLIW processor task engines 100 having
designer-defined computation units 124. One advantage of

Sep. 27, 2001

the compiler of the present invention is that the description
of the multi-processor system can be technology indepen-
dent and can be synthesized and optimized to various
technologies as required by the designer. Also, the necessary
tool scripts and database can be made available to the
designer.

[0074] Specifically, the compiler 268 maps operations for
a particular application described in the code generated by
the application development software 264 onto a VLIW
processor task engines 100 by matching each desired opera-
tion to a computation unit 124 that supports the desired
operation. The compiler 268 performs parallelization of
operations and resource management. The compiler 268
generates VLIW code that manages data movement through
concurrent data paths.

[0075] Another advantage of the compiler of the present
invention is that it decouples the definition of operations that
can be implemented by processor task engines 100 from the
definition of the computation units 124 contained in the task
engine 100. This flexibility provides significant freedom for
the compiler 268 to create optimal mappings of application
software onto particular computation units 124. Thus, an
advantage of the VLIW processor task engines 100 of the
present invention is that they offer the programmability
benefits of prior art general-purpose processors and the
performance benefits of custom logic.

[0076] The compiler 268 also configures the specific fea-
tures of the VLIW processor task engines 100. For example,
the compiler 268 can define one or more of the width of the
task engine data path, the number and types of computa-
tional units 124, the internal data routing in the data com-
munication module 114, the structure and depth of the task
queue 104, the structure of the task controller module 106,
and the number and types of memory units directly accessed
by the processor 100. In addition, the compiler 268 config-
ures the operational characteristics of the task engines 100
including instruction execution speed, computational effi-
ciency, and the amount of energy required to power the task
engine 100.

[0077] The compiler 268 can also define the number of
slots available in the instruction word. In addition, the
compiler 268 can allocate instruction slots to the various
computational units 124. These features allow the designer
to populate the task engines 100 with a diverse mix of
computation units 124, while still maintaining a relatively
small instruction word. These features also allow the
designer to configure a RISC-like task engine by overlaying
multiple computation units 124 into a single slot in the
instruction word.

[0078] Furthermore, the compiler 268 defines the charac-
teristics of the VLIW instructions used by the task engines
100. A designer can use the compiler 268 to reduce the
instruction space. In addition, a designer can define how
operations in computational units 124 overlap during
instruction cycles. Therefore, another advantage of the
VLIW processor task engines 100 of the present invention is
that a designer can use software tools to configure numerous
features of the task engine 100 for a specific application.

[0079] The compiler 268 can intelligently select the opti-
mal computational units 124 for specific operations. In one
embodiment, operations are implemented as Java methods

US 2001/0025363 Al

with embedded directives describing the op-code pneu-
monic that maps the operation to a computation unit 124.
This separates the definition of operations from the defini-
tion of computation units. During compilation, the compiler
268 sclects the specific computation unit 124 that will
execute the operation. Thus, another advantage of the multi-
processor system of the present invention is that operations
are not limited to execute on a specific computation units
124.

[0080] The ability to intelligently select the optimal com-
putational units 124 for specific operations is important for
some applications. For example, in applications that can be
accelerated by adding an operation to perform a particular
function, such as a 5-bit addition, the designer could create
a custom computational unit to perform this function and
add it into the processor. The operation and additional logic
can also be added to a pre-defined ALU computation unit.
The pre-defined ALU computational unit has a number of
operations that it supports already and the designer simply
maps those operations plus the new function, such as a 5-bit
addition operation, to the new computation unit.

[0081] Inone embodiment, the compiler 268 generates the
necessary tool scripts for support of numerous Electronic
Design Automation (EDA) tools used in the art for design
and verification of integrated circuits. The compiler can
generate the necessary tool scripts for an instruction set
simulator 272. In addition the compiler can generate the
necessary tool scripts for a rehearsal development board 274
that tests the design.

[0082] The software development tools 254 can include
verification tools that check the definition of the VLIW
processor task engine 100 configuration. The verification
tools include one or more programs that perform at least one
consistency test to validate the configuration. The software
development tools 254 can also include a hardware estima-
tor that estimate operational parameters, such as clock rate,
die size, gate count, and power requirements for the result-
ing hardware implementation of the VLIW processor task
engine 100. The software development tools 254 can also
generate configuration files that are necessary to enable the
embedded software development tools to map application
programs to the VLIW processor task engine 100.

[0083] FIG. 8 illustrates a block diagram of one embodi-
ment of the implementation kit 260 that generates a hard-
ware description of the VLIW processor task engines and the
multi-processor system. The implementation kit 260 gener-
ates the code required to implement a designer-defined
multi-processor system architecture that includes VLIW
processor task engines 100 of the present invention in a chip
262.

[0084] An implementation code generator 290 receives
code generated by the platform definition software 258 and
source files from one or more preprocessors 292. The
implementation code generator 290 generates various hard-
ware description codes. In one embodiment, the implemen-
tation code generator 290 generates a synthesizeable RTL
hardware description 294, such as Verilog RTL code. In one
embodiment, the implementation code generator 290 gen-
erates synthesis scripts 296. A development board imple-
mentation suite 298 uses the synthesis scripts 296 to gen-
erate a rehearsal processor, such as a FPGA, or other type of
programmable gate array, in the development board 274.

Sep. 27, 2001

[0085] In one embodiment, the implementation code gen-
erator 290 generates static timing analysis scripts 300. The
implementation code generator 290 can also generate veri-
fication code 302 that is used to perform consistency tests to
validate the configuration.

[0086] The designer configurable task engines and the
multi-processor systems of the present invention are well
suited for System on Chip (SoC) architectures an have
numerous advantages over prior art custom integrated cir-
cuits. The designer configurable task engines offer high-
performance with a high degree of programmability. These
task engines and systems providing a high-level of paral-
lelism and the ability to define custom data path elements.
These features eliminate the need for custom logic blocks,
which reduces the total cost of the system and increases the
time to market.

EQUIVALENTS

[0087] While the invention has been particularly shown
and described with reference to specific preferred embodi-
ments, it should be understood by those skilled in the art that
various changes in form and detail may be made therein
without departing from the spirit and scope of the invention
as defined by the appended claims. For example, although
specific embodiments were described for the task queue,
task control unit, memory interface unit, and computational
unit, numerous other embodiments of these devices can be
used with the processor task engine of the present invention.

What is claimed is:
1. A designer configurable processor comprising:

a. a plurality of designer configurable computational units
operating in parallel;

b. a memory device that communicates with the plurality
of computational units through a data communication
module; and

c. a software development tool that configures the plural-
ity of computational units and a data path though the
data communication module.

2. The processor of claim 1 wherein the designer config-
urable processor comprises a Very Long Instruction Word
(VLIW) processor task engine.

3. The processor of claim 1 wherein the data communi-
cation module comprises a register routed data communi-
cation module.

4. The processor of claim 1 wherein the memory device
stores at least one of data and instruction code.

5. The processor of claim 1 further comprising a task
queue that communicates with the data communication
module, the task queue scheduling tasks for the processor.

6. The processor of claim 5 wherein the task queue
comprises a task queue controller module that communi-
cates with the data communication module and a task queue
module that communicates with task queue bus.

7. The processor of claim 6 further comprising an instruc-
tion memory that communicates with the task queue con-
troller module, the instruction memory storing tasks for the
Processor.

8. The processor of claim 1 wherein the software devel-
opment tool comprise at least one of a compiler, an assem-
bler, an instruction set simulator, or a debugging environ-
ment.

US 2001/0025363 Al

9. The processor of claim 1 wherein the software devel-
opment tool comprises a graphical interface that visually
illustrates the configuration of the processor.

10. The processor of claim 1 wherein the software devel-
opment tool generate a synthesizable RTL description of the
Processor.

11. The processor of claim 1 wherein the software devel-
opment tool configures a data path from the processor to an
input/output module.

12. The processor of claim 11 wherein the software
development tool configures a width of the data path from
the processor to the input/output module.

13. The processor of claim 1 wherein the software devel-
opment tool configures a data routing path of at least one of
the plurality of computational units.

14. The processor of claim 1 wherein the software devel-
opment tool configures an instruction execution speed of at
least one of the plurality of computational units.

15. The processor of claim 1 wherein the software devel-
opment tool configures an energy required to operate at least
one of the plurality of computational units.

16. The processor of claim 1 wherein the software devel-
opment tool configures an instruction set of at least one of
the plurality of computational units.

17. The multi-processor system of claim 1 wherein at least
one of the plurality of designer configurable computational
units comprises a set of input registers and a set of result
registers.

18. A designer configurable multi-processor system com-
prising:

a. a plurality of designer configurable processors, each of
the plurality of processors comprising a plurality of
designer configurable computational units operating in
parallel;

b. a memory device that communicates with the plurality
of computational units through a data communication
module;

c. an input/output (I/0O) module that communicates with at
least one of the plurality of processors through an I/O
bus; and

d. a software development tool that configures the multi-

processor system.

19. The multi-processor system of claim 18 wherein at
least one of the plurality of plurality of processors comprises
a Very Long Instruction Word (VLIW) processor.

20. The multi-processor system of claim 18 further com-
prising an instruction memory device that communicates
with at least one of the plurality of processors.

21. The multi-processor system of claim 18 wherein the
software development tool generates a synthesizable RTL
description of at least one of the plurality of processors.

Sep. 27, 2001

22. The multi-processor system of claim 18 wherein the
software development tool configures a data path to the I/O
module.

23. The multi-processor system of claim 22 wherein the
software development tool configures a width of the data
path to the I/O module.

24. The multi-processor system of claim 18 wherein the
software development tool configures a data routing path of
at least one of the plurality of computational units.

25. The multi-processor system of claim 18 wherein the
software development tool configures an instruction execu-
tion speed of at least one of the plurality of computational
units.

26. The multi-processor system of claim 18 wherein the
software development tool configures an energy required to
operate at least one of the plurality of computational units.

27. The processor of claim 18 wherein the software
development tool configures an instruction set of at least one
of the plurality of computational units.

28. A method of defining a computational unit for a
multi-processor hardware system, the method comprising:

a. defining an architecture of at least computation unit in
a Very Long Instruction Word (VLIW) processor with
a software development tool; and

b. generating data from the software development tool
that integrates the at least one computation unit into the
VLIW processor task engine.

29. The method of claim 28 further comprising defining a
data path width of the at least one computation unit with the
software development tool.

30. The method of claim 28 further comprising defining
an internal data routing path of the at least one computation
unit with the software development tool.

31. The method of claim 28 further comprising defining
an energy used to operate the at least one computation unit
with the software development tool.

32. The method of claim 28 further comprising defining
an instruction speed of the at least one computation unit with
the software development tool.

33. The method of claim 28 further comprising defining
an instruction set of the at least one computation unit with
the software development tool.

34. The method of claim 28 further comprising perform-
ing a consistency check to validate the multi-processor
hardware system.

35. The method of claim 28 wherein the generating data
from the software development tool comprises generating
scripts for an electronic design automation tool.

#* #* * * #*

	Tiffs to PDF

